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Despite the dramatic increase of viscosity as temperature decreases, some glasses are known to
feature room-temperature relaxation. However, the structural origin of this phenomenon – known
as the "thermometer effect" – remains unclear. Here, based on accelerated molecular dynamics
simulations of alkali silicate glasses, we show that both enthalpy and volume follow stretched ex-
ponential decay functions upon relaxation. However, we observe a bifurcation of their stretching
exponents, with β = 3/5 and 3/7 for enthalpy and volume relaxation, respectively, in agreement
with Phillips’ topological diffusion-trap model. Based on these results, we demonstrate that the
thermometer effect is a manifestation of the mixed alkali effect. We show that relaxation is driven
by the existence of stressed local structural instabilities in mixed alkali glasses. This driving force
is found to be at a maximum when the concentrations of each alkali atom equal each other, which
arises from a balance between the concentration of each alkali atom and the magnitude of the local
stress that they experience.

As non-equilibrium materials, glasses continuously re-
lax toward the supercooled liquid meta-stable equilib-
rium state [1–4]. However, the dramatic increase of vis-
cosity as temperature decreases effectively prevents vis-
cous glass relaxation at ambient temperature [5, 6]. Sur-
prisingly, recent experiments and simulations [1, 7] have
shown that, for certain compositions, glass can still fea-
ture some room-temperature structural and stress relax-
ation. This phenomenon is known as the "thermome-
ter effect" as, in the 19st century, thermometers made of
mixed alkali lime silicate glass used to experience gradual
changes of dimension over time, rendering them inaccu-
rate [8, 9]. This effect is usually attributed to the mixed
alkali effect (MAE), which is observed in oxide glasses
comprising at least two alkali oxides, A2O and B2O. The
MAE manifests itself as a nonlinear evolution of glasses’
properties with respect to the molar fraction A/(A + B)
[10, 11].

The structural origin of the MAE and glass relaxation
are still regarded as one of the most challenging unsolved
problems in condensed matter science [12–14].

At low temperature (around and below the glass
transition temperature), glasses typically exhibit non-
exponential relaxation, which can be described by
a stretched exponential or Kohlrausch–Williams–Watts
function (see Eq. 1) [15]. Various models have been pro-
posed to explain the origin of the stretched exponential
nature of relaxation [4, 12]. In particular, stretched ex-
ponential relaxation has been suggested to result from
the existence of some heterogeneity in the glass, wherein
different regions relax following nearly exponential func-
tions but with different relaxation times [16]. Alterna-

tively, the stretched exponential nature of glass relax-
ation can be elegantly described by Phillips’ diffusion-
trap model, wherein some uniformly distributed "excita-
tions" are assumed to diffuse through the network until
they meet randomly distributed "traps," which annihi-
late the excitations [12, 17]. However, this model remains
largely axiomatic and the nature of the excitations and
traps lacks any clear atomistic picture or any explicit link
with the MAE effect. More generally, the atomic origin
of the MAE itself remains largely unknown [18–22].

To reveal the atomistic origin of the MAE and
stretched exponential relaxation of glass, we rely here
on a recently developed accelerated simulation tech-
nique, which successfully reproduced the long-term room-
temperature relaxation observed in Corningr Gorillar

Glass [1, 7]. In that method, the glass is subjected to
small, cyclic perturbations of volumetric stress, ±σ0. At
each stress cycle, a minimization of the energy is per-
formed, with the system having the ability to deform to
reach the targeted stress. Note that the average stress
remains zero over time and that the observed relaxation
does not depend on the choice of ±σ0, provided that it
remains sub-yield (see Ref. [1]). In effect, this method
mimics the relaxation observed in granular materials sub-
jected to vibrations [23, 24], wherein small vibrations
tend to densify the material (artificial aging), whereas
large vibrations randomize the grain arrangements (reju-
venation). Similar ideas relying on the energy landscape
approach [25, 26] have been applied to non-crystalline
solids, based on the fact that small stresses deform the
energy landscape locally explored by the atoms. This can
result in the reduction of some energy barriers that exist
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at zero stress, thus allowing the system to jump over the
barriers to relax to lower energy states. This transforma-
tion is irreversible since once the stress is removed, the
system remains in its "aged" state. On the contrary, large
stresses move the system far from its initial state, which
eventually leads to rejuvenation [27, 28]. Although pre-
vious accelerated aging techniques have sometimes been
shown to yield results that do not match spontaneous
aging [26], we ensured that the present protocol predicts
a realistic relaxation by checking that, upon relaxation,
a hyperquenched glass evolves toward the inherent con-
figurations of the more slowly cooled supercooled liquids
[1].

Here, to investigate the MAE in glass relaxation, we
simulated a series of (K2O)x(Na2O)16−x(SiO2)84 (mol %)
mixed alkali silicate glasses, made of 2991 atoms, with
varying x. All MD simulations were performed using the
well-established Teter potential [29–31] with an integra-
tion timestep of 1 fs. Coulomb interactions were evalu-
ated by the Ewald summation method with a cutoff of
12 Å. The short-range interaction cutoff was chosen as
8.0 Å. Liquids were first generated by placing the atoms
randomly in the simulation box. The liquids were then
equilibrated at 5000 K in the NPT ensemble (constant
pressure) for 1 ns, at zero pressure, to assure the loss
of the memory of the initial configuration. Glasses were
formed by linear cooling of the liquids from 5000 to 0
K with a cooling rate of 1 K/ps in the NPT ensemble
at zero pressure. Note that initially cooling the glasses
down to 0 K allows the atoms to reach local minima in
the energy landscape, to avoid any thermal contribution
to the relaxation subsequently computed.

Figure 1a shows the relative variations of the en-
thalpy of the binary sodium and potassium silicate
glasses (denoted Na and K hereafter) and mixed
(K2O)8(Na2O)8(SiO2)84 glass (denoted Na+K hereafter)
with respect to the number N of stress perturbation cy-
cles applied, using a stress amplitude of σ0 = 0.4 GPa (as
used in Ref. [1]). As expected, the stress perturbations
allow all glasses to relax towards lower enthalpy states.
This stabilization is gradual, and about 104 cycles are
needed for the enthalpy to plateau. As shown in Fig.
1b, all glasses also show a gradual compaction in volume
upon relaxation, which cannot be explained by elastic de-
formations since the average applied stress remains zero.
Remarkably, the shape of the volume relaxation observed
herein is fairly similar to that observed experimentally
[7]. Further, as shown in the insets of Figs. 1a and 1b,
we observe that the magnitudes of the enthalpy and vol-
ume relaxation reach a maximum when the concentration
of Na equals that of K atoms. Namely, the mixed alkali
Na+K glass shows a final volumetric relaxation that is
nearly three times larger than those of the single-alkali
Na or K glasses. This is a clear demonstration that the
thermometer effect is indeed a manifestation of the MAE.
These results constitute, to the best of our knowledge, the

FIG. 1. Relative variation of the (a) enthalpy and (b) volume
of the sodium (Na), potassium (K), and mixed alkali (Na+K)
silicate glasses with respect to the number of stress perturba-
tion cycles applied. The insets show the final absolute relative
variations of (a) the enthalpy and (b) volume. Lines serve as
guide for the eye.

first direct simulation of the MAE in glass relaxation.
We now focus on elucidating the atomistic mechanism

of relaxation. Enthalpy and volume relaxation can typi-
cally be modeled using Kohlrausch stretched exponential
decay functions:

f(N) = exp

[

−

(

N

N0

)β
]

(1)

where N0 is a typical number of stress perturbation cy-
cles (proportional to a relaxation time [1]) and β a di-
mensionless stretching exponent satisfying 0 < β < 1.
The particular value of β is of great interest as it cap-
tures some information about the topology of the relax-
ation process [17]. Indeed, Phillips’ diffusion-trap model
predicts a theoretical value for the stretching exponent
as β = d∗/(d∗ + 2), where d∗ = φd is the effective di-
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mensionality of the channels along which the excitations
diffuse in the configurational space, d is the dimension-
ality of the system (i.e., 3 for structural glasses), and
φ is the proportion of active relaxation channels [12].
Hence, when all the channels are active (φ = 1), one
obtains β = 3/5. When only long-range channels are ac-
tive, by assuming an equipartitioning of the short- and
long-range contributions (φ = 1/2), the model predicts
β = 3/7. It should be noted that this model only applies
to perfectly homogeneous glasses, that is, featuring uni-
formly distributed excitations, which is rarely achieved
experimentally without relying on advanced industrial-
scale melting techniques like the fusion draw process [7].

As shown in Fig. 2, we observe that the computed en-
thalpy and volume relaxation functions indeed feature a
stretched exponential decay. Interestingly, we find that
enthalpy shows a stretching exponent β = 3/5, which,
as mentioned previously, corresponds to the situation in
which all relaxation channels are active [12]. Note that
the 3/5 stretching exponent was experimentally observed
to describe the relaxation of stress in glasses [17, 32],
which suggests that, in terms of relaxation, stress can
be an indicator of enthalpy. Further, as shown in Fig.
2, we observe that the relaxation of enthalpy and vol-
ume do not show the same trend. In contrast to the
enthalpy, we find that volume features a stretching ex-
ponent β = 3/7, which corresponds to the situation
in which only long-range relaxation channels are active
[12]. This result agrees with experimental observations
[7, 17, 32]. Note that previous simulations yielded a dif-
ferent exponent (β = 1) [1], but these glasses used in
this study were not preliminary cooled to 0 K. This sug-
gests that the presence of residual thermal excitations
affects the relaxation mechanism. As shown in the inset
of Fig. 2, the difference of stretching exponents can be
clearly established by plotting log[− log(f)] with respect
to log(N/N0), where the slope is equal to β. Finally, we
note that, in agreement with experiments [17], the re-
laxation of volume appears to be slower (i.e., higher N0)
than that of the enthalpy, which is in line with the notion
that the former occurs through long-range channels only.

Finally, we investigate the origin of the MAE in
the context of room-temperature relaxation. First,
we propose that the excitations introduced within
Phillips’ diffusion-trap model correspond to locally un-
stable atomic units. To assess this hypothesis, we first
computed the coordination number (CN) of all atomic
species. Although Si atoms remain four-fold coordinated
with oxygen atoms in all glasses, the CN of Na and K
atoms shows a variation with composition. As expected,
the average CN of Na and K is around 6 and 8 for the
binary Na and K glasses, respectively [33]. However, as
shown in Fig. 3a, the CN of Na decreases upon the addi-
tion of K, whereas that of K increases upon the addition
of Na. This can be attributed to a mismatch between the
alkali atoms and the rest of the silicate network as one

FIG. 2. Relaxation function f of the enthalpy, volume, and
internal stress in the mixed sodium potassium silicate glass,
with respect to the number of stress perturbation cycles N .
The data are fitted with stretched exponential decay func-
tions f(N) = exp[−(N/N0)

β ] with a stretching exponent
β = 3/5 and 3/7 for the stress/enthalpy and volume, respec-
tively (see text). The inset shows log[− log(f)] with respect to
log(N/N0) for the enthalpy, stress, and volume, whose slope
yields β. Dashed lines corresponding to the slopes β = 3/5
and 3/7 are added for comparison.

moves away from the binary composition.

This miscoordinated state results in the formation of
local stresses inside the atomic network, which was as-
sessed by computing the local stress applied to each atom
using the virial definition of stress [34]. The trace of the
stress tensor of each atom was then averaged to obtain
the local pressure applied to each atom. Although the
network as a whole is at zero pressure, some bonds are
under compression while others are under tension, so that
they mutually compensate each other. By convention,
a positive stress corresponds here to a state of tension,
while a negative one refers to a state of compression.
We observe that the average stress applied to Na and K
atoms exhibits a clear dependence on composition. As
shown in Fig. 3b, the average stress experienced by Na
atoms decreases upon the addition of K, whereas that ex-
perienced by K atoms increases upon the addition of Na.
This can be understood as follows. Over-coordinated K
atoms present an excess of O atoms in their first coordi-
nation shell. Due to mutual repulsion, O atoms tend to
separate from each other, which, in turn, tends to stretch
the K–O bonds. On the other hand, under-coordinated
Na atoms show a deficit of O atoms, which, in turn, are
more attracted by the central cation. This results in a
compression of Na–O bonds. The total cumulative stress
experienced by all Na and K atoms then arises from the
balance between two competitive behaviors. (1) The ab-
solute stress per atom experienced by Na and K species
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FIG. 3. (a) Shift of the coordination number of Na (K) atoms, using the binary sodium (potassium) silicate glass as a reference,
with respect to the composition of the glass. (b) Average stress per Na and K atoms. A positive (negative) stress denotes a
local compression (tension). (c) Total cumulative stress experienced by all Na and K atoms. (d) Difference between the total
cumulative stresses experienced by Na and K atoms, which acts as the driving force for relaxation. Lines serve as guides for
the eye.

increases upon the addition of K and Na, respectively.
(2) In contrast, the numbers of Na and K atoms present
in the network decreases upon their replacement by K
and Na atoms, respectively. Altogether, as shown in Fig.
3c, the total cumulative stress experienced by Na and K
atoms reaches an extremum when the concentration of
Na equals that of K.

The mechanism of the MAE in glass relaxation can
then be understood as follows. Miscoordinated species
act as local instabilities (or "excitations" following
Phillips’ terminology). These excitations diffuse via lo-
cal deformations of the atomic network, until an atomic
arrangement that is locally under compression meets one
that is under tension. At this point, both excitations are
annihilated (or reach a "trap"), thereby relieving the ini-
tial internal stress stored in the network. As such, the
driving force for relaxation corresponds to the difference
between the total cumulative stress experienced by Na
and K atoms, which, as shown in Fig. 3d, is maximum
when the concentration of Na equals that of K. This be-
havior provides an intuitive atomistic origin of the MAE,
that is, the excessive volumic relaxation of glasses com-
prising mixed alkali atoms (i.e., thermometer effect).

This mechanism is supported by the fact that the ex-
tent of the absolute internal stress experienced by Na
and K atoms decreases over time. As shown in Fig.
2, the relaxation function of the internal stress matches
that of the enthalpy, both in terms of shape (same
stretched exponent β = 3/5) and relaxation time (same
N0). This agrees with experiments conducted for bulk
metallic glasses, wherein enthalpy and stress relaxations
were found to exhibit failry similar stretched exponents
[35, 36]. This demonstrates that the short-range diffu-
sion of local internal stress controls enthalpy relaxation.
In turn, volume appears to relax via some long-range re-
organizations of the structure, which are made possible
by the release of the internal stress, that is, when an
excitation meets a trap.

The mechanism presented herein provides a clear struc-
tural origin for the low-temperature relaxation observed
in glasses comprising mixed modifiers. More generally,
structural relaxation is of direct relevance to the glass
industry, e.g., for the processing of liquid crystal display
(LCD) substrates [37]. In addition, it can be expected
that the excessive internal stress observed here in mixed
alkali glasses can also play a crucial role in the MAE
for other properties. For instance, such local instabilities
are likely to affect the propensity for atomic rearrange-
ments under stress, which could explain the deviation
from linearity observed in the hardness of mixed mod-
ifers silicate glasses [38]. The coexistence of atomic units
that are under compression or tension can also explain
the decrease in the mobility of the alkali atoms in mixed
glasses, which results in minima in conductivity and dif-
fusion coefficients [11].
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