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We provide an experimental framework where periodically driven PT -symmetric systems can be
investigated. The set-up, consisting of two UHF oscillators coupled by a time-dependent capac-
itance, demonstrates a cascade of PT -symmetric broken domains bounded by exceptional point
degeneracies. These domains are analyzed and understood using an equivalent Floquet frequency
lattice with local PT -symmetry. Management of these PT -phase transition domains is achieved
through the amplitude and frequency of the drive.

PACS numbers: 05.45.-a, 42.25.Bs, 11.30.Er

Introduction - Non-Hermitian Hamiltonians H which
commute with the parity-time (PT ) symmetry operator
might have a real spectrum when some parameter γ, con-
trolling the degree of non-hermiticity, is below a critical
value γPT [1]. In this parameter domain, termed the
exact PT -phase, the eigenfunctions of H are also eigen-
functions of the PT - operator. In the opposite limit,
coined the broken PT -phase, the spectrum consists (par-
tially or completely) of pairs of complex conjugate eigen-
values while the eigenfunctions cease to be eigenfunctions
of the PT operator. The transition point γ = γPT shows
all the features of an exceptional point (EP) singularity
where both eigenfunctions and eigenvalues coalesce. Its
existence played a prominent role in many PT - studies
ranging from optics [2–18], matter waves [19, 20] and
magnonics [21, 22] to acoustics [23–25] and electronics
[26, 28, 29]. Subsequent experimental demonstrations
[4, 9, 10, 12–14, 17, 18, 24–27] revealed the viability and
technological impact of many of these studies.

Though the exploitation of PT -symmetric systems has
been prolific, most of the attention has been devoted to
static (i.e. time-independent) potentials. Recently, how-
ever, a parallel activity associated with time-dependent
PT -symmetric systems has started to attract increasing
attention [30–40]. The excitement for this line of research
stems from two reasons: the first is fundamental and as-
sociated with the expectation that new pathways in the
PT -arena can lead to new exciting phenomena. This ex-
pectation is further supported by the fact that the inves-
tigation of time-dependent Hermitian counterparts led to
a plethora of novel phenomena– examples include Rabi
oscillations [41], Autler-Townes splitting [42], dynamical
localization [43], dynamical Anderson localization [44],
and coherent destruction of tunneling [45, 46] (for a re-
view see [47]). The second reason is technological and it
is associated with the possibility to use driving schemes
as a flexible experimental knob to realize new forms of re-
configurable synthetic matter [48, 49]. Specifically, in the
case of PT -symmetric systems one hopes that the use
of periodic driving schemes can allow for management
of the spontaneous PT -symmetry breaking for arbitrary
values of the gain and loss parameter. The basic idea
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FIG. 1: (Color Online) (a) Experimental PT circuit with tun-
ing and modulation control; (b) Signal control and analysis
system.

behind this is that periodic driving can lead to a renor-
malization of the coupling and a consequent tailoring of
the position of the EPs. Unfortunately, while there is a
number of theoretical studies [31, 34, 36, 39] advocating
for this scenario, there is no experimental realization of
a time-dependent PT -symmetric set-up [50].

Here we provide such an experimental platform where
periodically driven PT −symmetric systems can be in-
vestigated. Our set-up (see Figs. 1a,b) consists of two
coupled LC resonators with balanced gain and loss. The
capacitance that couples the two resonators is paramet-
rically driven with a network of varactor diodes. We
find that this driven PT system supports a sequence of
spontaneous PT -symmetry broken domains bounded by
exceptional point degeneracies. The latter are analyzed
and understood theoretically using an equivalent Floquet
frequency lattice with local PT - symmetry. The posi-
tion and size of these instability islands can be controlled
through the amplitude and frequency of the driving and
can be achieved, in principle, for arbitrary values of the
gain/loss parameter.

Experimental set-up– A natural frequency of ω0/2π =
235 MHz was chosen as the highest frequency convenient
for a simple implementation of electronic gain and loss.
The L = 32 nH inductors of Fig. 1a are two-turns of
1.5 mm diameter Cu wire with their hot ends supported
by their corresponding parallel C = 15 pF on opposite
sides of a grounded partition separating gain and loss
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compartments. Gain and loss (corresponding to effec-
tive parallel resistances ∓R) are directly implemented
via Perkin-Elmer V90N3 photocells connecting the cen-
ter turn of each inductor either directly to ground (loss
side) or to a BF998 MOSFET following the LC node
(gain side). Thus as both photocells experience the same
voltage drop, the loss side photocell extracts its current
from the tap point while the gain side photocell injects its
current into the tap point. The photocells are coupled to
computer driven LEDs through 1 cm light-pipes for RF
isolation. As the gain of the MOSFET is changed, its ca-
pacitance shifts slightly, unbalancing the resonators. A
BB135 varactor is used to compensate for these changes.

The capacitance coupling network, implemented by
similar varactors, is optimized for application of a modu-
lation frequency in the vicinity of 4.6 MHz while simulta-
neously providing the DC bias necessary for controlling
the inter-resonator coupling Cc.

Fig. 1b shows the remainder of the signal acquisition
set-up. The excitation in each resonator is sensed by a
small pickup loop attached to the input of a Minicircuits
ZPL-1000 low noise amplifier. The gain and loss pick-up
channels are then hetrodyned to ≈ 30 MHz before being
captured by a Tektronix DPO2014 oscilloscope.

The experimental unmodulated PT diagram, shown
with the color-map in Fig. 2a, is matched to the the-
oretical results in order to calibrate both the resonator
frequency balance and the gain/loss balance. The cou-
pling is then modulated, directly comparing each cali-
brated point with and without the modulation. Signal
transients are measured by pulsing the MOSFET drain
voltage at approximately 1 kHz and capturing the res-
onator responses on both the gain and loss sides. The
captured signals can be frequency-analyzed to obtain the
modulated (or unmodulated) spectrum, see Fig. 2. Close
attention has to be paid to avoid saturation of any of the
components in the signal pick-up chain.

Theoretical considerations– Using Kirchoff’s laws, the
dynamics for the voltages V1 (V2) of the gain (loss) side
of the periodically driven dimer is:
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Above β = 1 + 2c, γ = R−1
√
L/C is the rescaled

gain/loss parameter, and
�
c (

��
c) denotes the first (second)

derivative of the scaled capacitive coupling c ≡ Cc

C =
c0 + ε cos (ωmτ) with respect to the scaled time τ . Equa-
tion (1) is invariant under joint parity P and time T

operations, where T performs the operation τ → −τ and
P is the Pauli matrix σx.

The eigenfrequencies ωα (α = 1, 2) of system Eq. (1)
in the absence of driving are given as

ωα =
1

2
√

1 + 2c0

(√
γ2c − γ2 + (−1)

α
√
γ2PT − γ2

)
(3)

where the spontaneous PT - symmetry breaking point
and the upper critical point can be identified as γPT =√

1 + 2c0−1 and γc =
√

1 + 2c0+1 respectively, and they
are both determined by the strength of the (capacitance)
coupling between the two elements of the dimer. A para-
metric evolution of these modes, versus the gain/loss pa-
rameter γ, is shown in Fig. 2a where the open circles rep-
resent Eq. (3) and the color map shows the experimental
results. We find that the spectrum of the undriven dim-
mer is divided in two domains of exact (γ < γPT ) and
broken (γ > γPT ) PT -symmetry phase.

In order to investigate the effects of driving we now
turn to the Floquet picture. We therefore employ a Li-
ouvillian formulation of Eq. (1). The latter becomes

dψ

dτ
=Lψ, L =

[
0 I2
−B −A

]
, ψ =

(
V
�
V

)
(4)

and allows us to make equivalences with the time-
dependent Schrödinger equation by identifying a non-
Hermitian effective Hamiltonian Heff = ıL.

The general form of the solution of Eq. (4) is given
by Floquet’s theorem which in matrix notation reads

F (τ) = Φ (τ) e−ıQτ with Φ
(
τ + 2π

ωm

)
= Φ (τ), Q a

Jordan matrix and F (τ) a 4 × 4 matrix consisting of
four independent solutions of Eq. (4). The eigenval-
ues of Q are the characteristic exponents (quasi-energies)
which determine the stability properties of the sys-
tem: namely the system is stable (exact PT phase) if
all the quasi-energies are real and it is unstable (bro-
ken PT phase) otherwise. We can evaluate the quasi-
energies by constructing the evolution operator U (τ, 0) =
F (τ)F−1(0) via numerical integration of Eq. (5) (or of
Eq. (1)). Then the quasi-energies are the eigenvalues of

1
−ı2π/ωm

lnU (τ = 2π/ωm, 0).

In Figs. 2a-g we report our numerical findings together
with the experimentally measured values of the quasi-
energies versus the gain/loss parameter. Figs. 2a,d show
the unmodulated situation. Fig. 2b,e show the behavior
at modulation frequency ωm = 0.0198 and modulation
amplitude ε = 0.01. Finally, Figs 2c,f show the evolution
of the spectrum with a small change in modulation fre-
quency ωm for fixed ε. See the Supplementary Material
at [] for details of the analysis.

We find several new features in the spectrum of the
driven PT -symmetric systems. The first one is the exis-
tence of a cascade of domains for which the system is in
the broken PT -phase. These domains are identified by



3

0.7 0.85 1.00
0

0.005

0.01

0.7 0.85 1.00
0

0.004

0.008

0.7 0.85 1.0
0

0.004

0.008

0.7 0.85 1.00
0

4

8 × 10-3

Simulation
Analytics
Experiment

m = 0.0198 

m = 0.0196 

m = 0.0183 

m = 0.01745 

m = 0.0198 

m = 0.0196 

m = 0.0183 

m = 0.01745 

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               ha                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

/ PT 

/ PT

/ PT 

/ PT

a                               b  
                                                        
c                               d     
                                                           
e                               f 

g                               h

FIG. 2: (Color Online) Spectral density plots for Re (ω) of the RLC dimer of Fig. 1, with c0 = 0.0671 and ε = 0.01: (a)
Undriven dimer ε = 0. The white circles show the expected ladder ω1,2 + nωm associated with the eigenfrequencies of HF,0 for
ωm = 0.0198; (b) The crossing points “evolve” to flat regions when the system is driven; (c) For a different driving frequency
ωm = 0.01745 the flat regions shift to different γ-domains. The white circles in (b,c) represent the results of the simulations
and match the dominant bands of the density plots within the corresponding log10 color schemes. The domain shift with drive
frequency is more clearly seen in Im (ω) from experiment (aqua circles), numerics (blue line) and perturbation theory Eq. (10)
(green circles) for: (d) an undriven; and (e,f) driven dimers, with ωm shown. The arrows and stars indicate the fixed crossing
point in (a) for reference. Finally, (g) shows an (ε, ωm) map of the PT-exact (white) and -broken (shaded) phases for γ/γPT

fixed at the position of the arrows.

the flat regions, seen in Figs. 2b,c where the real parts of
eigenfrequencies have merged in the vicinity of the cross-
ing points (indicated by the arrows and stars) and the
emerging non-zero imaginary parts shown in Figs. 2d-f.
The size and position of these unstable “bubbles” are di-
rectly controlled by the values of the driving amplitude
ε, compare Figs. 2a,d with Figs. 2b,e or by the driving
frequency ωm, compare Figs. 2b,e with Figs. 2c,f. The
bubbles are separated by γ-domains where the system

is in the exact (stable) PT -phase. The transition be-
tween stable and unstable domains occurs via a typical
EP degeneracy (notice the square -root singularities in
Figs. 2d-f). Eventually, the system becomes unstable be-
yond some critical gain/loss value γmax which is defined
as the maximum value of the gain/loss parameter above
which there are no further stability domains. Generally
γmax depends on both ε and ωm and in the limit of ε = 0
becomes equal to γPT . Fig. 2g maps the numerically de-



4

termined PT-exact (white) and broken (shaded) phases
for γ fixed at the position of the arrows in the accompa-
nying plots.

A theoretical understanding of the spectral metamor-
phosis from a single exact/broken phase to multiple do-
mains of broken and preserved PT -symmetry, as ε in-
creases from zero, is achieved by utilizing the notion of
Floquet Hamiltonian HF . To this end, we first introduce
a time-dependent similarity transformation R (see Sup-
plement), which brings Heff to a symmetric form. Under
this transformation, Eq. (4) takes the form

ı
d

dτ
ψ̃ =H̃ψ̃; H̃ ≡ RHeffR−1 − ıR

d

dτ
R−1 (5)

which dictates the evolution of the transformed state ψ̃ =
Rψ. The matrix H̃ has the form
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where c± = 1
2±

1
2

√
1+2

��
c√

β
and c(3) denotes the third deriva-

tive of the capacitive coupling with respect to the scaled
time τ . We can easily show that P̃T H̃P̃T = H̃ where

P̃ =

[
0 σx
σx 0

]
and T : τ → −τ, ı→ −ı.

We are now ready to utilize the notion of Floquet
Hamiltonian HF whose components are given by

〈α, n|HF |β, l〉 =H̃
(n−l)
αβ + nωmδαβδnl, (7)

where the subscripts α, β = 1, 2, 3, 4 label the com-
ponents of H̃, see Eq. (6), n, l are any integers and

H̃
(n)
αβ = 1

2π/ωm

∫ 2π/ωm

0
H̃αβ (τ) e−ınωmτdτ . In this pic-

ture the quasi-energies are the eigenvalues of the Floquet
Hamiltonian HF . Equation (7) defines a lattice model
[52] with connectivity given by the off-diagonal elements
of HF and an on-site gradient potential nωm.

Within the first order approximation to the strength
of the driving amplitude ε and the modulation frequency
ωm ∼ O(ε), the Floquet Hamiltonian is symmetric and
takes the block-tridiagonal form HF = HF,0 + εHF,1 +

O
(
ε2
)

where 〈n|HF,0 |n〉 = H̃(0) |ε=0 + nωmI4 consists
of the diagonal blocks of HF while 〈n+ 1|HF,1 |n〉 =
〈n|HF,1 |n+ 1〉 = X consist of off-diagonal blocks of HF .
The 4× 4 matrix X has the form

X =
ı

4 (1 + 2c0)
3/2


0 ı− γ −ı− γ 0

ı− γ 0 0 −ı+ γ
−ı− γ 0 0 ı+ γ

0 −ı+ γ ı+ γ 0

 .
(8)

Next we proceed with the analytical evaluation
of the quasi-energies. First, we neglect the off-
diagonal block matrices HF,1 and diagonalize HF,0.
To this end, we construct a similarity transfor-
mation P−10 H̃(0) |ε=0 P0 = diag {ω2, ω1,−ω1,−ω2}.
Correspondingly the eigenvalues of HF,0 are simply
{ω2 + nωm, ω1 + nωm,−ω1 + nωm,−ω2 + nωm} i.e. the
spectrum resembles a ladder of step ωm with the basic
unit associated with the eigenfrequencies of the undriven
dimer Eq. (3). The resulting ladder spectrum (white
circles) is shown in Fig. 2a versus the gain/loss param-
eter γ. Level crossing occurs at some specific values of
γ(j) < γPT , i.e., ω2

∣∣
γ(j) = ω1

∣∣
γ(j) +jωm. When the driv-

ing amplitude ε is turned on, the crossing points evolve to
broken PT -symmetry domains with respect to gain/loss
parameter γ. The centers of the instability bubbles are
associated with γ(j) which is controlled by ωm (see Figs.
2b,c). Furthermore, the real part of the eigenfrequencies
become degenerate for a range of γ-values around γ(j),
Fig. 2b, while an instability bubble emerges for the imag-
inary part – see Fig. 2e for numerical (blue solid lines)
and experimental data (filled aqua circles). The transi-
tion points from stable to unstable domains have all the
characteristic features of an EP.

To understand this phenomenon, we consider the ef-
fect of the off-diagonal term εHF,1. For simplicity, we
focus on the unstable region around the crossing point at
γ(1). Application of degenerate perturbation theory to
the nearly degenerate levels ω2 and ω1 + ωm gives

ω =
(ω2 + ω1 + ωm)±

√
(ω2 − ω1 − ωm)

2
+ 4ε2X̃12X̃21

2
,

(9)

where X̃ = P−10 XP0 and the subscripts indicate the cor-
responding matrix components. Around the EP, ω can
be written as

Re (ω) ≈ ω2

∣∣
γ(1) ; Im (ω) =± Cm

√
γ − γ0, γ > γ0

(10)

which has the characteristic square-root singularity of
EP degeneracies. The constant Cm depends on ε, ωm
(see Supplement), and γ0 is the solution of the equation

(ω2 − ω1 − ωm)
2
+4ε2X̃12(γ)X̃21(γ) = 0 (see Eqs. (8,9)).

For our experiment, where γ0 → γPT and γPT → 0, we
estimate that

γ0 ≈ γPT

1−

(√
2ωm +

√
2ω2

m + ε (4γPT + ε)

4γPT + ε

)2
 .

(11)
From Eq. (10) we see that both ωm, ε are responsible
for a renormalization of the coupling between the two
levels (compare with Eq. (3)). Predictions (10) are in
agreement with the numerical and experimental data (see
green line in Fig. 2e,f). Higher orders of EPs γ(j) can be
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analyzed in a similar manner after incorporating higher
order perturbation theory corrections. In Fig. 2g we re-
port a summary of PT -exact and broken domains in the
parametric (ε, ωm) space [53, 54] where γ/γPT = 0.74
(indicated by white arrow in Figs. 2a-c). Obvious conse-
quences of the (ε, ωm) control of stable-unstable domains
can be also observed in the dynamics (see Supplement).

From Eq. (11) we can also deduce that for constant
ωm (determining the center of the bubble), the edges of
the instability domain are pushed away when ε increases.
Thus the broken PT -symmetric regimes can broaden be-
yond the γPT border by controlling ωm or/and ε. For
example, in Figs. 2e,f we can see the revival of the exact
PT phase around γ/γPT = 1.07 as the driving frequency
increases. In this case, the center of the nearby instabil-
ity bubble, which is controlled by ωm, shifts to smaller γ-
values and eventually disappears together with the whole
bubble. At the same time γmax remains roughly unaf-
fected. In fact in the high frequency limit, one can av-
erage out the time dependence and recover a “static”
PT -symmetric dimmer with renormalized coupling con-
stants [39, 40]. In this limit, and for small ε, one can
easily show using Eq. (4), that γmax ≈ γPT . Conse-
quently, the stability domain between the upper border
of the γ(1)-bubble and γmax increases.

Conclusions– We have experimentally demonstrated
that PT -symmetric systems containing periodically
driven components are capable of controlling the pres-
ence, strengths, and positions of multiple exact-phase
domains, bounded by corresponding exceptional points.
The generic behavior is well described by a perturbative
analysis of the Floquet Hamiltonian, and opens up new
directions of exceptional point management in a variety
of electronic, mechanical or optomechanical applications.
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