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In a spontaneously dimerized quantum antiferromagnet, spin-1/2 excitations (spinons) are con-
fined in pairs by strings akin to those confining quarks in non-abelian gauge theories. The system
has multiple degenerate ground states (vacua) and domain-walls between regions of different vacua.
For two vacua, we demonstrate that spinons on a domain-wall are liberated, in a mechanism strik-
ingly similar to domain-wall deconfinement of quarks in variants of quantum chromodynamics. This
observation not only establishes a novel phenomenon in quantum magnetism, but also provides a
new direct link between particle physics and condensed-matter physics. The analogy opens doors
to improving our understanding of particle confinement and deconfinement by computational and

experimental studies in quantum magnetism.

The phenomenon of confinement is well known in quan-
tum chromodynamics (QCD), where quarks are bound
by ’strings’ and can only be observed within composites;
the mesons and baryons. The physics underlying con-
finement is still poorly understood, e.g., as concerns the
nature of the confining strings, because the relevant 3+1
dimensional (D) non-abelian gauge theories are strongly
coupled and reliable analytical methods are lacking. Nu-
merical lattice calculations with strings are also challeng-
ing, especially in the presence of matter.

Some understanding of confinement has been devel-
oped within supersymmetric (SUSY) gauge theories,
which generically have multiple vacua. In a conjec-
ture due to Rey and advocated by Witten [1], confining
SUSY gauge theories facilitate deconfinement of quarks
on domain-walls interpolating between two vacua. Re-
cently [2], by utilization of the special kind of compact-
ification [3, 28], it was demonstrated that this feature
transcends SUSY theories and is generic for QCD-like
theories. In this work we show that the liberation on the
walls also transcends QCD-like theories and takes place
in quantum magnets as well. We confirm this by large-
scale numerical studies of the J-Q model; a quantum
spin model amenable to quantum Monte Carlo simula-
tions. All of its QCD-like counterparts suffer from still
unsurmountable numerical difficulties, such as the sign
problem or the exact chiral limit. Our work establishes
domain-wall (DW) deconfinement as a phenomenon in
condensed matter physics and provides an unbiased nu-
merical observation from first principles, thus providing
valuable insights into the nature of the phenomenon and
solidifying its generic nature in QFTs. Finally we also
hope that this will further stimulate ideas in overcoming
the numerical difficulties in QCD.

In condensed matter physics, certain excitations can be
regarded as composites of confined objects, and in some

cases deconfinement, or fractionalization, takes place.
The most famous example is that of charge e¢/3 excita-
tions in the fractional quantum Hall effect [4, 5]. Another
well-established case is the fractionalization of spin waves
into spinons carrying spin S = 1/2 in spin chains [6-8].
Here we focus on a system with close correspondence with
gauge theories: a spontaneously dimerized 2D quantum
magnet (a valence-bond-solid, VBS), where spins paired
up into localized singlets form columns on the square
lattice [9]. Due to lattice symmetries, the pattern can
form in multiple ways, corresponding to different vacua.
When exciting such a state by breaking a bond, the two
unpaired (or triplet-paired) spins are confined by a string
of deformed VBS texture. Deconfinement can take place
if the VBS is weakened upon approaching a so-called de-
confined quantum-critical point [10, 11]. However, the
identity of the spinon as a quasi-particle is lost at the
critical point, due to the gapless critical host system [12].
Truly deconfined spinons are believed to exist in gapped,
topological spin liquid phases [13].

Here we point out that the analogy between quark
and spinon confinement is not superficial, but the two
phenomena can be described in strikingly similar terms,
as illustrated in Fig. 1. We describe a mechanism of
spinon liberation on a VBS domain-wall and demonstrate
this explicitly by quantum Monte Carlo (QMC) simu-
lations of a spin model hosting Z, (four vacua) or Zs
(two vacua) VBS ground states. Deconfinement on the
domain-wall takes place upon reducing the Z, symmetry
to Zs. Given the highly non-perturbative nature of con-
finement, the ability to study this phenomenon in the set-
ting of quantum magnets, in simulations and potentially
also in experiments, is a promising avenue for making
further progress.

Previous work on quark deconfinement on a domain-
wall [2] required a non-thermal compactification of the
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FIG. 1. Deconfinement on domain-walls. A quark-confining
string (a) composed out of two strands (domain-walls) sep-
arating two vacua [2] allow deconfinement on a domain-wall
(b). Confinement in a VBS with Z5 degeneracy, where two
domain-walls form between unpaired spins (¢). A domain-
wall absorbs the string completely, liberating the spinons (d).

gauge theory, R®! — R%! x S, where S' is the spatial
3-direction (i.e., the long-distance theory is 2+1D) [3, 28].
Such compactifications preserve the center symmetry in
the compact direction. We will be interested in two sce-
narios: QCD with adjoint matter [QCD(adj)] and pure
Yang-Mills theory at § = 7 [Y M]. The gauge field in the
compact 3-direction is Az, which upon compactification
turns into a compact scalar field in the adjoint represen-
taion. The preservation of the center symmetry effec-
tively causes this scalar field to “condense”, Higgsing the
gauge group down to the maximally abelian subgroup,
which for SU(2) gauge theory is U(1). This is sometimes
called the Hosotani mechanism [14]. The effective the-
ory in the IR is then a U(1) 2+1D gauge theory, but
it is not free because the underlying non-abelian theory
allows for finite action monopoles [15, 16]. By employ-
ing the famous dualization of Polyakov [17], the effective
U(1) gauge theory with monopoles can be written as a
241D theory of a single scalar y—the dual photon field
(see Eq. (1) below).

The mechanism of [2] is operative in both QCD(adj)
and Y M, due to the presence of only even-charge
monopole-induced non-perturbative potential [18], lead-
ing to stable line-like domain-walls carrying half a unit of
electric flux. Since quarks carry a whole unit of electric
charge, quark—anti-quark pairs are bound by two sepa-
rate half-flux domain-walls. The fact that fundamental
strings can end on domain walls is then a matter of ge-
ometry: strings confining the electric charges consist of
two domain walls carrying half the electric flux each. The
string can then expand and form a domain wall, as illus-
trated in the top panel of Fig 1.

All of these properties are manifested within the fol-
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FIG. 2. The vacua of a Z4, VBS, illustrated with short valence
bonds (singlets). Patterns with a relative shift of one lattice
spacing are colored with blue and green. The four phases meet
at an unpaired spin (red circle). A spinon can be thought of as
such a nexus of four different kinds of domain walls (dashed
lines labeled by the numbers 1-4) with a spin in the core.
Spinons are then not confined by a single string (inlay A),
but by four string-like domain lines (inlay B).

lowing (Euclidean) effective Lagrangian [2, 3, 19, 20]:
Lo = M [(8,x)* — m?cos(2x)] , (1)

where x ~ x+2m is an angular field referred to as the dual
photon, M « g(L)/L and m? o 1/L26*8”2/92(L), with L
the size of the compact direction and g(L) the running
gauge coupling at scale L. The dual photon arises upon
compactification from 3+1D to 241D because the gauge
group abelianizes to U(1) [starting from an SU(2) gauge
group]. Finally the cos(2x), rather than cos(x) signifies
the lack of charge-1 monopoles. For details of the reason-
ing leading to Eq. (1) we refer to Supplemental Material
[21].

In the path integral, wordlines of charged particles (i.e.
quarks) act like 27-vortices in the field x, i.e., the wind-
ing of the compact field y around the quark measures its
chromo-electric charge. The potential — cos(2x), how-
ever, forces the y-field to settle at either x = 0 or x = m;
the two vacua of the SU(2) theory [29]. A quark is then
attached to two collimated 1/2 flux strings, across which
the x-field winds by 7; see Fig. 1(b). These half-flux
strings are domain walls, which has a remarkable, but
simple consequence that the insertion of a confined quark
generates a domain wall containing that quark. Conse-
quently, the quark can move freely along the domain wall.

We now discuss an analogous phenomenon in a VBS



quantum magnet. The columnar VBS on the uniform
square lattice breaks Z; symmetry, leading to domain
walls when boundary conditions force different patterns
(vacua) in different parts of the system. The four vacua
(which can be associated with x = 0,7/2, 7, 37/2) can
meet at a single point, in which case the presence of an
unpaired spin (spinon) is required at the nexus [30], as
illustrated in Fig. 2. A domain wall between, say, the
two different horizontal dimer patterns, representing a m
winding of x, will split into two 7/2 domain walls sepa-
rated by a region with vertical dimers [31].

Confinement of spinons in the VBS is now a mat-
ter of topology: an unpaired spin causes misalignment
of dimers, forcing interfaces between inequivalent vacua.
Two unpaired spins must be connected by two defect
lines, which are domain walls separating the two vacua
(inlay A of Fig. 2). However, since four domain walls in-
tersect at an unpaired spin, two unpaired spins are also
connected by four domain walls. Inlay B of Fig. 2 is
therefore a more accurate illustration of the composite
nature of strings. We should emphasize however, that
the spinons are necessarily dynamical, and the string will
break once its energy content becomes comparable to the
mass of the S = 1 excitation, so that new pairs can be
created (in analogy to meson and baryon creation upon
separating quarks). This is in contrast to the gauge theo-
ries we discussed and to the quantum dimer model, where
there is no internal spin structure of the dimers. The
strings are then stable and show a domain-wall struc-
ture [32]. The dimer model can be thought of as a pure
gauge theory without matter fields, while the full quan-
tum magnet inseparably contains matter.

In the gauge theory of the VBS [9-11, 33, 34], spins
are represented by vectors on the Bloch sphere coupling
to Berry phases. An antiferromagnet is described by
a unit vector field n on the spatial lattice in continu-
ous time. Haldane [33] showed that the Berry phase
in 2+1D has no influence on smooth 7 configurations.
However, it couples to singular “hedgehog” configura-
tions in space-time, which can render (n) = 0, e.g., in
the VBS phase [9, 34]. The hedgehogs are the analogues
of the monopole-instantons, which had a profound influ-
ence on the gauge dynamics discussed above. On the
square lattice these events appear on the dual lattice
(i.e., centers of plaquettes) and couple to Berry phases
as 1,e'% '™, e37/2 depending on which of the four sub-
lattices of the dual lattice they occupy [33]. Further one
can write 7(x) = ul (z)du(x), where x is a position on the
lattice and u(x) = (us (), u2(x)) is a bosonic or fermionic
SU(2) doublet, with the constraint wuifu; + upfuy = 1.
This parametrization is invariant under the local gauge
rotation u — e"®u, and the effective theory with the
operators uy o is therefore a U(1) gauge theory. In the
path-integral the hedgehog configurations of 7 appear as
monopoles of this U(1) gauge group.

Néel order implies that u condenses, breaking the U(1)

gauge symmetry spontaneously. In the absence of Néel
order, v can be integrated out and the remaining pure
gauge theory can be dualized to a single compact scalar
field x, as before. Here there are four types of monopoles
(and their anti-monopoloes), coupling to the x field and
Berry phases as eXti'5 and e X~ (k = 0,1,2,3).
However, only multiple of 4 monopole events are possi-
ble [9, 34] due to interference of other charges. A sim-
ilar effect is responsible for eq. (1) in pure Yang-Mills
theory at § = 7 (see [28] and Supplementary Materi-
als). The potential cos(4y) then forms and leads to four
distinct vacua labeled by x = 0,7/2,7,37/2. Domain
walls interpolate between vacua with x and x + 7/2 and
carry energy proportional to their length. The insertion
of an unpaired spin at  amounts to inserting | (z) (spin
up) or u;(x) (spin down). For definiteness, let uy 2 be
fermionic, and label the states by the occupation num-
bers uluy and ubuy as Q = {]00),]01), |10, [11)}. The
constraint u];ul + u;ug = 1 is obeyed only by the states
[10) (up) and |01) (down) at the given site. Insertion of
ub(a:) therefore ensures that the spin at x is up or down,
because upon projection to physical spin states uJ{Q, uEQ
contain only [10),]01). Since ULQ(%‘) are charged under
the U(1) gauge group, they represent the fictitious elec-
tric charges, which impose winding by 27 on the y field.
An isolated unpaired spin then sources the four domain
walls as in Fig. 2.

The Z, VBS phase does not allow for spinons to be de-
confined on the domain wall, as a single domain wall, say
between x = 0 to x = m/2, would absorb only two out of
four domain walls to which an isolated spin is attached.
The remaining two cause confinement. If the Lagrangian
is deformed, however, to change the ground state degen-
eracy from 4 to 2, e.g., with horizontal singlets energeti-
cally preferred in Fig. 2, the picture changes drastically.
Vertical dimers are no longer vacua of the theory, the
domain walls 2 and 3 and separately 1 and 2 of Fig. 2
merge, forming 7 domain walls between the horizontal
vacua offset by a Z shift. An isolated spin is then stuck
on a domain wall interpolating between these two vacua,
as in Fig. 1(d). Such a deformation leads to a cos(2x)
term exactly as in Eq. (1) and the parallel with “libera-
tion on the wall” in gauge theories [2] is complete.

To numerically study a VBS domain wall we use the
J-Q model [35]. Distinguished by the absence of QMC
sign problem, it has been used extensively [36] to ex-
plore VBS states and deconfined criticality [37-42]. The
Hamiltonian H = —JH ;—Q.H,—Q,H, contains singlet
projectors P;; = 1/4 — S, - S; as explained in Fig. 3(a).
The different Q-interactions for z- and y-oriented singlet
projectors allow us to study both Zy (for Q, = Q,) and
Zs (Qz # Qy) VBSs. We use an unbiased ground-state
QMC method [31, 39, 42, 43] and set @, = 1.

When @, = @y = @, a deconfined transition takes
place at ¢ = Q/(J + Q) =~ 0.6; for ¢ > 0.6 the ground
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FIG. 3. The J-Q model and domain walls. (a) The sin-
glet projectors P;; of the J and @ terms. (b) Using periodic
boundaries in the y-direction and open boundaries in the x-
direction, a m domain wall is enforced when L. is odd and
Qs > Qy. The y-direction is compactified.

state is a Z4 VBS on a torus of size L x L with L even [38].
By setting Q, < ), open boundaries in the = direction,
and an odd length L, the energetics lead to domain wall
along the y-direction, as illustrated in Fig. 3(b). The
domain wall is broadened by fluctuations and is not fixed
at the center of the system.

It is possible to study spinons explicitly using QMC
in a basis of valence bonds and unpaired spins [12]. In
the present case, it is easier to just confirm that the
domain wall hosts a critical mode. With the domain
wall along the y-direction, we expect the spin correla-
tions in the z-direction to decay exponentially with dis-
tance. This is demonstrated in Fig. 4(a) for two dif-
ferent sets of couplings; one deep in the VBS phase
(J =0,Q,/Q, = 0.6) and one where fluctuations are
more significant (J/Q, = 0.5,Q,/Q, = 0.6). The inset
panel shows the VBS order parameter [39], demonstrat-
ing explicitly the phase change due to the domain wall.

To study correlations along the domain wall we define
CY(r) = (m(y) - m(y + r)), where m is total spin on a
lattice row. Fig. 4(b) shows that the dependence on r =
L, /2 fits the two-point function of the critical Heisenberg
chain [44], CY(L/2) ~ L_11n1/2(L/L0), from which we
can infer that spinon excitations, although confined in
the bulk, are liberated on the domain wall.

The inset of Fig. 4(b) demonstrates explicitly that de-
confinement does not take place in the Z4 VBS, where the
system has two 7/2 domain walls (as in Fig. 2) [31]; the
spin correlations decay exponentially, indicating a gap
and confined spinons. In the main panel of Fig. 4(b), the
data at @, = 0.9 exhibits a cross-over behavior, where
L Z 40 is required to observe the critical Heisenberg be-
havior. For smaller L the m domain wall is not fully
established.

In 3D the physics of the domain wall should be even
richer. The membrane-like domain wall may host Néel
order, in which case its excitations are spin waves. How-
ever, the domain wall could also be a spin liquid with
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FIG. 4. Correlations in the presence of a domain wall. The z
boundaries of the (L + 1) x L J-Q lattice (L even) are open,
which forces a domain wall in the y-direction. The coupling
Q. = 1. (a) Spin correlations transverse to the domain wall
at Qy = 0.6 and L = 32. Averaging has been performed
over all spin pairs separated by (Az = r, Ay = 0). The inset
shows the VBS (dimer) order parameter vs the lateral system
coordinate. (b) Correlations parallel to the domain wall at
r = L/2 fitted to the critical Heisenberg form. The inset
shows the behavior in three different phases of the model:
Néel-ordered (J = 5.0, Q, = 0.6), Z2 VBS (J = 0.5, Q, =
0.6), and Z4 VBS (J = 0.0, Q, = 1.0).

deconfined spinons. In addition to possible realizations
in magnetic solids, a natural setting to study domain-
wall deconfinement experimentally with high tunability
would be optical lattices, where there are efforts under-
way to design quantum spin Hamiltonians [45]. On a
more fundamental level, studies of various other aspects
of confinement in quantum magnets, e.g., the nature of
the confining string and its breaking when matter is cre-
ated (here spinons, but more generally fermions can be
introduced by doping), may provide valuable information
relevant also in QCD.

Realistic QCD regimes do not have degenerate vacua,
but non-degenerate, so-called k-vacua most likely exist
[46]. It is precisely two or more of these vacua that be-
come degenerate in the SUSY limit, or when the topo-
logical angle is dialed to 8 = 7 (as we did here). Part



of the string tension should be due to the excitation of
these k-vacua, even in the regime which is inaccessible
to reliable computations. This would in turn imply that
the topological charge density fluctuation is sensitive to
the presence of the QCD string, which can be tested on
the lattice. The QCD string may have nontrivial inter-
actions with the axion—a hypothetical particle which,
among other intriguing features, is a candidate for dark
matter. An intriguing question is to what extent some of
these open issues can also be studied in quantum mag-
nets, or in the richer setting of doped quantum magnets.
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