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We theoretically study the interplay between bulk Weyl electrons and magnetic topological defects, including
magnetic domains, domain walls, and Z6 vortex lines, in the antiferromagnetic Weyl semimetals Mn3Sn and
Mn3Ge with negative vector chirality. We argue that these materials possess a hierarchy of energies scales
which allows a description of the spin structure and spin dynamics using a XY model with Z6 anisotropy.
We propose a dynamical equation of motion for the XY order parameter, which implies the presence of Z6

vortex lines, the double-domain pattern in the presence of magnetic fields, and the ability to control domains
with current. We also introduce a minimal electronic model which allows efficient calculation of the electronic
structure in the antiferromagnetic configuration, unveiling Fermi arcs at domain walls, and sharp quasi-bound
states at Z6 vortices. Moreover, we have shown how these materials may allow electronic-based imaging of
antiferromagnetic microstructure, and propose a possible device based on domain-dependent anomalous Hall
effect.

The anomalous Hall effect (AHE) [1, 2] has been a nu-
cleation center for geometry and topology in the physics of
solids. The concepts of Berry curvatures and topology unveil
broad applications to electronic systems in the form of topo-
logical insulators, superconductors [3, 4] and semimetals with
topological Weyl (and other) fermion excitations [5–18]. The
AHE reappears as one of the key emergent properties of topo-
logical semimetals.

The dissipationless nature of the AHE also makes it in-
teresting for applications. Antiferromagnetic realizations of
AHE may be of practical interest for the sake of miniatur-
ization, but the microscopic magnetic structure, the spin dy-
namics, and the AHE of antiferromagnets are relatively un-
investigated. Here we attack these issues in the family of
noncollinear antiferromagnets including Mn3Sn and Mn3Ge,
for which a strong AHE was predicted and then experimen-
tally verified to exist[19–22]. First principles calculations fur-
ther indicate that in Mn3Sn and Mn3Ge there are Weyl nodes
around the Fermi level [23, 24]. We argue that these materials
possess a hierarchy of energies scales which permits a descrip-
tion of the microstructure and spin dynamics as an XY model
with Z6 anisotropy. We propose a dynamical equation of mo-
tion for the XY order parameter, which implies a rich domain
structure, the presence of Z6 vortex lines, and the ability to
control domains with current. We further introduce a mini-
mal electronic model which allows efficient calculation of the
electronic structure in a textured antiferromagnetic configura-
tion, unveiling Fermi arcs at domain walls, and quasi-bound
states at Z6 vortices. We show how these materials may allow
electronic-based imaging of antiferromagnetic microstructure
and propose a possible device based on domain-dependent
AHE.

Symmetry and the microscopic spin model The Mn3Sn-
class material crystallizes in hexagonal lattice structure with
space group P63/mmc as shown in Fig. 1(a)-(b). Taking
Mn3Sn as an example, each Mn4+ ion has a large classical
spin ∼2-3µB[25, 26] forming a layered kagome lattice. The
system orders antiferromagnetically in a 120◦ noncollinear
structure as shown in Fig. 1(c), with the Neel temperature

TN ≈ 420 K [25–28]. This may be understood from the hi-
erarchy of interactions typical for 3d transition metal ions:
Heisenberg exchange is largest, followed by Dzyaloshinskii-
Moriya (DM) interaction, with single-ion anisotropy (SIA)
the weakest effect. The former two terms select an approx-
imately 120◦ pattern of spins with negative vector chirality
which leaves a U(1) degeneracy: any rotation of spins within
the ab plane leaves the energy unchanged, when the SIA is
neglected. Therefore, the system can be described by the fol-
lowing microscopic spin Hamiltonian:

Hs =J1
∑
〈ij〉xy

Si · Sj + J2
∑
〈ij〉z

Si · Sj

+
∑
〈ij〉xy

Dij · Si × Sj −
∑
i

K (n̂i · Si)2 . (1)

Here the spin Si is a classical vector with fixed lengthms. The
positive constants J1, J2 are isotropic exchange interactions
between intra-plane and inter-plane nearest-neighbor spins ,
which include contributions mediated by itinerant electrons,
i.e. RKKY couplings. We include an in-plane Dzyaloshinskii-
Moriya interaction specified by the vector Dij=Dẑ+D′ẑ×
êij , where êij is the unit vector oriented from site i to site j.
n̂i is the unit vector characterizing the local easy axis at site
i. From Eq. (1) we can determine nearly all the properties of
the classical kagomé antiferromagnet. In particular, we find
the Z6 anisotropy λ is O(K3), λ = K3m2

s/12(J1 + J2)2.
The SIA K and the in-plane DM interaction D′ lead to both
in-plane and out-of-plane cantings of the magnetic moment:

M⊥c =
Kgms

J1 + J2
(cos θ, sin θ, 0) ,

Mz = − D′Kgms√
3(J1 + J2)2

sin 3θ , (2)

where g denotes the Landé g factor. The z-component magne-
tization |Mz| vanishes when θ is 2πn/6 (λ>0), i.e., when the
local easy axis points from the Mn to the nearest-neighbor Sn,
which we believe is the ground state for Mn3Sn. On the other
hand, |Mz| is maximized when θ = (2n + 1)π/6 (λ < 0),
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FIG. 1. (a) The Lattice structure of Mn3Sn from a top view, and (b)
a side view. The thick dashed lines with brown, red, and blue col-
ors indicate different hopping processes of the tight-binding model
introduced in the text. The gray dashed lines in (a) indicate the easy
axes. (c) The six magnetic domains. (d) Schematic illustration of the
Z6 vortex lines.

which may lead to small in-plane anomalous Hall conductiv-
ity, as is the case in Mn3Ge [21, 22].

The in-plane and out-of-plane magnetic susceptibilities are
also derived from Eq. (1), from which we can evaluate the
microscopic interaction parameters by comparing the suscep-
tibility formula to the corresponding experimental data [21].
We find that J1 + J2 = 5.606 meV, D = 0.635 meV, and
K = 0.187 meV (see Supp. Mat.).

Order parameter, free energy, and implications: From
Eq. (1) we derive a phenomenological free energy for the
system with a XY order parameter ψ = mse

−iθ, where ms

is the magnitude of the local spin moment, and θ is (minus)
the angle of some specific spin in the plane. We focus on the
ordered phase, in which ms is uniform, and the free energy
may be written in terms of θ alone. Symmetry dictates the
form

Fs =

∫
d3r

( ρ
2
|∇θ(r)|2 + ρ1|K̂(θ)·∇θ|2

− λ cos 6θ(r)− γB · K̂
)
. (3)

Here ρ and ρ1 are isotropic and anisotropic stiffnesses, λ
is a Z6 anisotropy. We also introduced the XY unit vector
K̂ = (cos θ, sin θ, 0), which describes coupling γ to a uni-
form magnetic field B (which occurs due to small in-plane
canting of the moments [25, 26, 28]). Eq. (3) is derived from
the microscopic spin Hamiltonian Eq. (1), which allows us
to estimate these parameters. We estimate ρ≈ 0.568 meV/Å,
ρ1≈0.011 meV/Å, and λ≈1.159×10−7 meV/Å

3
at tempera-

ture 50 K (see Supp. Mat.).
The Z6 structure of the free energy implies the existence of

six minimum energy domains in which θ maximizes λ cos 6θ.
We take λ > 0, for which this is θ = 2πn/6, with n =
0, . . . , 5. It is convenient to label them as α+,−, β+,−, and
γ+,− as shown in Fig. 1(c), and the ± superscript denoting

B
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FIG. 2. The spin configurations on the coarse-grained lattice at time
t = 9600 obtained from numerical simulations of the Langevin
equation: (a)without any magnetic field, and (b) an external mag-
netic field B = 0.005T is applied along the y direction.

domains which are time-reversal conjugates.
The long-time dynamics follows from the free energy and

the Langevin equation (see Chapter 9 of Ref. 29)

∂θ(r, t)

∂t
= −µ δFs

δθ(r, t)
+ µη(r, t) + f(j), (4)

where η(r, t) represents a random thermal fluctuation at tem-
perature T obeying the Gaussian distribution of zero mean. µ
is the damping factor, and hereafter is set to 1. The final term
f(j) represents non-equilibrium forces to be discussed later.
Neglecting ρ1 and for B = 0, Eq. (4) becomes the famous
(overdamped) sine-Gordon equation. Its stationary solutions
include a domain wall with a width π

√
ρ/λ/6∼ 110 nm us-

ing our estimates. Significantly, the elementary domain walls
connect states which differ by ∆θ = π/3, which are not
time-reversal conjugates. The ρ1 term leads to orientation-
dependence of the domain wall energy, and e.g. faceting of
domain boundaries. Six of these minimal domain walls meet
at curves in three dimensions which define Z6 vortex lines –
see Fig. 1(d), around which θ winds by ±2π.

To observe the microstructure, we carried out a numeri-
cal simulation of a thin slab, assuming homogeneity in the
z direction and discretizing the 2D continuum model with an
effective lattice constant of acg = 600Å (see Supplementary
Material). Figure 2(a) shows the equilibrium spin configu-
ration resulting from a quench from a random initial state of
a 576µm2 sample in zero applied field. Clearly there are six
types of domains in the figure, marked by α±, β±, and γ±.
These sixfold domains merge at the vortices and antivortices
marked by white and black dots respectively.

In Fig. 2(b), we show the spin configuration resulting from
the same preparation but with an applied magnetic field of
B=0.005 T along the [120] axis (y axis). As is clearly shown
in the figure, the field preferentially selects just two degener-
ate β+ (cos θ = −1/2) and γ− (cos θ = 1/2) domains. The
orientation of the domain wall, which tends to be normal to
the [100] direction, is fixed by the anisotropic stiffness term.

Minimal electronic model and electronic structure: In or-
der to study the electronic properties in the presence of mag-
netic textures with large-scale spatial variations, we introduce
a minimal four-band tight-binding (TB) model with a single
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FIG. 3. (a) The bulk bandstructure of the tight-binding model in the
α+ domain with 1.7◦ spin canting. The inset indicates the positions
of two different types of bulk Weyl nodes W1 and W2 in the kz =0
plane. (b) The anomalous Hall conductivity σyz in the α+ domain.

spinor pz orbitals at each Sn. As indicated by the thick dashed
lines in Fig. 1(a)-(b), we consider the following four hopping
processes:

tintra(rnm) = t0 I2×2 + tJ σ · Snm + (−1)ξmniλz σz ,

tinter(rnm) = t1 I2×2 ,
t′inter(rnm) = iλR ernm

soc · σ ,
t′′inter(rnm) = t2 I2×2 , (5)

where the hopping from orbital m centered at rm to orbtial n
centered at rn is expressed as a 2 × 2 matrix due to the spin
degrees freedom of each orbital, and rnm = rn − rm. The
model includes three spin-independent hopping terms (t0 in-
layer and t1 and t2 inter-layer), a spin-dependent hopping tJ
reflecting exchange coupling to the Mn moment S in the mid-
dle of the bond across which the electrons hop, and two spin-
orbit coupling (SOC) terms λz and λR, which are important
due to the heavy nature of the Sn ions. Details on the ξmn and
ernm

soc parameters which define the SOC are given in the Supp.
Mat. Hereafter we fix the parameters of the model as: t0 = 1,
t1 = 0.5, tJ =−0.5, λz = 0.5, t2 =−1, and λR = 0.2. We ar-
range Snm spins to reflect the spin order under consideration.
In the ordered state we take the spin canting angle∼ 1.7◦, cor-
responding to a net moment ∼ 5% of each Mn spin for each
kagome cell. We refer the readers to Supplementary Material
for more details.

The bulk bandstructure of the TB model introduced above
in the α+ domain is shown in Fig. 3(a). We find that in
the α+ domain (see Fig. 1(c)), there are four Weyl nodes at
(±0.3522, 0, 0) and (∓0.3522,±0.3522, 0) at energy EW1 =
−2.395t0, which are denoted by solid blue dots in the in-
set of Fig. 3(a), with the sign corresponding to the chirali-
ties of the Weyl nodes. There are two additional band touch-
ing points with quadratic dispersions along the kz direction at
(0,±0.3564, 0) at energy EW2 =−2.480t0. Since the disper-
sion is quadratic along kz , these two additional nodes carry
zero Berry flux, and do not make significant contributions to
the transport properties. The positions of the Weyl nodes in
the other five domains can be obtained by applyingC3z and/or
time-reversal operations to those of the α+ domain.

From magnetic structure to electronic properties: The most

interesting feature of Mn3Sn and its relatives is the strong in-
fluence of the magnetism on the electronic properties such as
conductivities. In the Mn3Sn family, crystalline symmetries
and Onsager relation tightly constrains the conductivity ten-
sor (see Supp. Mat.). In general the antisymmetric part of the
Hall conductivity is expressed in terms of a “Hall vector” Q,
with 1

2 (σµν −σνµ) = e2

2πhεµνλQλ. Up to the third order in ψ,
we find

Q = q|ψ|K̂ + q̃|ψ|3Im
[
(K̂x + iK̂y)3

]
ẑ. (6)

where q|ψ| and q̃|ψ|3 are parameters arising from microscopic
modelling. Since we expect theO(|ψ|3) terms to be small, we
observe that the Hall vector is directed along K̂ which lies
in the xy plane. To verify these symmetry considerations, we
carried out a direct calculation of the full bulk conductivity
tensor of the microscopic model using the Kubo formula (see
Supp. Mat.). We show the calculated anomalous Hall conduc-
tivity σzx in the α+ domain in Fig. 3(b). The result is gener-
ically non-zero, but highly dependent upon the Fermi energy
(the horizontal axis).

Electronic properties associated with topological defects:
The direct connection of the conductivity to the order param-
eter suggests that transport can be a fruitful probe of magnetic
microstructures. When the electronic mean free path is shorter
than the length scales of magnetic textures, a local conductiv-
ity approximation is adequate: J(r) = σ[K̂(r)]E(r). From
this relation and Eq. (6), the electrostatic potential Ψ(r) can
be determined for an arbitrary texture K̂(r). For example,
in the yz plane, the electrostatic potential Ψ(z, y) may be
expanded as: Ψ(z, y) ≈ −zE0 + E0φ(z, y), and φ(z, y) is
determined by

∂2z φ(z, y) +
σyy
σzz

∂2y φ(z, y) = ∂y θH(z, y) , (7)

where E0 is the constant electric field, θH(z, y) =
σyz(z, y)/σzz , and σyz is proportional to K̂x as shown in
Eq. (6). Through inversion, it should be possible to image the
magnetic domain structure purely through a spatially-resolved
electrostatic measurement.

In the full quantum treatment, the electronic structure is
non-trivially modified by magnetic textures. The new feature
here is the appearance of Fermi arcs at domain walls. This
is because a domain wall acts as a sort of internal surface, at
which Fermi arc states carry chiral currents, similar to ordi-
nary surfaces. Without loss of generality consider a minimal
energy domain wall between the β+ and γ− domains, which
have K at ±30◦ from the y axis. The domains have Weyl
points in the kz = 0 plane, with chiralities that differ in the
two domains. Distinct electronic properties thus occur when
this domain wall is in an xy, xz or yz plane of the crystal.

Fig. 4(a) shows the surface spectral functions of the β+ do-
main for a [100] surface. There are three Fermi arcs connect-
ing the two projected Weyl nodes which are closer to the ori-
gin. Fig. 4(b) shows the spectral function at the interface of
the β+ and γ− domains with the same orientation. It shows
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FIG. 4. (a) The surface Fermi arcs of the β+ domain with the surface
normal vector x̂. (b) The domain-wall Fermi arcs with the domain
wall in the yz plane. The white dots indicate the projection of Weyl
nodes into the folded surface Brillouin zone.

double the Fermi arcs found at the interface, i.e. 6 instead of
3 (see Supp. Mat. for more details).

We make two proposals to detect the presence of the
domain-wall Fermi arcs. First, the in-plane transport within
a domain wall may exhibit its own anomalous Hall effect.
We checked that this indeed occurs for a β+ − γ− wall
with zx-orientation, by calculating σzx for a supercell with
two domain walls spread over 30 primitive cells. We find
σzx = 0.044 for the supercell, about two times larger than
the bulk value of 0.023 found for the same cell with a sin-
gle β+ or γ− domain. This enhancement is expected when-
ever K̂ is normal to the wall in its interior. Second, domain
wall bound states can manifest as an intrinsic resistance across
the wall, since they take away from the weight of continuum
states which are strongly transmitted and hence contribute to
conductance. We verified such a decreased conductance nor-
mal to the wall for all domain wall orientations in numerical
studies (see Supp. Mat.)

While we focused on the domain walls, it is worth noting
that the Z6 vortex lines may have their own electronic states.
Using the tight-binding model introduced above, we have nu-
merically constructed a 40 × 40 × 1 supercell including six
domains, which are merged at a vortex line. The energy de-
pendence of the local density of states (DOS) at the vortex line
is shown in Fig. 5(a), where the red (blue) line indicates the
DOS in the presence (absence) of the vortex line. There are
two distinct peaks of DOS which seem to be contributed by
the vortex line: one at energy E ∼ 4; and the other extends
from -1.3 to 0.2. Fig. 5(b) further shows the local DOS dis-
tribution in the supercell at E = −1.15 in the presence of a
vortex line, which indicates a sharp peak localized at the vor-
tex line. Such quasi-bound states at the vortex line may be a
consequence of the chiral magnetic field emerging from the
winding of the XY spins around the Z6 vortex line [30].

Current-driven domain-wall dynamics Let us now consider
the feedback of the conduction electrons on the spin texture.
Given that the primary order parameter of the antiferromagnet
is not the magnetization, it is unclear how consideration of
the spin-transfer torque [31] applies here. Instead, we take
a symmetry-based approach and ask how the current j may
appear as a force in the equation of motion for the easy spin
angle θ, Eq. (4). The result (see Supp. Mat.) is that the force

α+
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γ+

α-
β+

γ-

(a) (b)

FIG. 5. (a) The energy dependence of the local DOS at the vortex
line. (b) The local DOS at energy E = −1.15t0 distributed in real
space with a vortex line located at the origin.

takes the form

f(j) = −
∑
a

(
paja∂aθ + q1j · ∂zK̂ + q2jz∇ · K̂

)
. (8)

Here px = py , pz , q1 and q2 are constants. Various arguments
(see Supp. Mat.) suggest that q1 and q2, which tend to drive
the domain wall along the direction perpendicular to the cur-
rent flow, are much smaller than pa, so we henceforth neglect
them.

Despite the intrinsic antiferromagnetic nature of the sys-
tem, the pµ terms appear formally very similar to spin-transfer
torques. They could be understood in a hydrodynamic fash-
ion as describing “convection” of the spin texture with or
against the current flow: indeed added to Eq. (4) , these terms
are equivalent to a Galilean boost and consequently velocity
va = µpaja. This leads to concrete experimental proposals.
Specifically, in the geometry of Fig. 2(b), a current applied
along the x direction controls the position of the wall. The
non-dissipative Hall voltage measured between two contacts
across the y direction at fixed x can thereby be switched by
purely electrical means, as the domain wall moves to the left
or right of the contacts [32].

Although the quantitative results discussed in this letter
are for Mn3Sn, most of the key physics such as the domain-
dependent AHE, the domain-wall Fermi arcs, the general form
of the spin models, and the expression of the spin-transfer
torque, also applies to Mn3Ge. This is because they are de-
rived based on symmetry considerations and topological argu-
ments which are expected to be robust regardless of materials’
details.

The results of this paper provide the framework to design
and model the spin dynamics and topologically-influenced
electrical transport in the negative vector chirality antifer-
romagnets Mn3Sn and Mn3Ge, and the methodology may
be applied more broadly to XY-like antiferromagnetic sys-
tems. Weyl nodes in the electronic structure induce Fermi arc
bound states that influence transport in the presence of domain
walls. In addition to advancing the fundamental physics of
Weyl fermions in noncollinear antiferromagnets, these results
mark the Mn3Sn-class of materials as promising candidates
for novel magnetic storage devices.
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