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We employ a recently developed computational many-body technique to study for the first time the
half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation (U) and disorder
(V ) strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from
the Mott insulator expands with increasing temperature in a manner resembling a quantum critical
point. Our study of the resistivity temperature scaling Tα for this metal reveals non Fermi liquid
characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic
was observed. We argue that these exotic results arise from a systematic change with U and V of
the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.

A hallmark of a conventional Fermi liquid (FL) in good
metals is the T 2 scaling of the resistivity (ρ) with tem-
perature T . However, deviations from this behavior have
been reported in several correlated electronic materials
such as heavy fermions [1–4], rare earth nickelates [5],
layered dichalcogenides [6], and cuprates [7–9]. Various
ideas for explaining non Fermi liquid (NFL) states have
been proposed. For instance, a T = 0 quantum critical
point (QCP) could induce the linear ρ ∼ T scaling in
the cuprates [9–11]. In the NFL observed in the two-
dimensional electron gas (2DEG) [12–14], charge or spin
glassy metallic states could provide an alternative [15–
18]. In spite of these important efforts, the understand-
ing of NFLs in correlated systems still eludes theorists.
Moreover, in heavy fermion experiments a puzzling con-
tinuous variation of the ρ vs. T scaling exponent α be-
tween 1 and 1.6 was found [1–4]. Considering that the
microscopic physics of the several NFL material fami-
lies are quite different, it is a challenge to find a global
understanding of NFL states in correlated systems. In
particular, we need to identify concrete model Hamilto-
nian systems that not only support NFL states but also,
within a single framework, capture various NFL system-
atics observed across different material families.

To address these issues, here we study the temperature
characteristics of the unconventional metal known to de-
velop at T = 0 from the competition between strong elec-
tron interactions and disorder in the half-filled Anderson-
Hubbard model on a square lattice. In the clean limit,
the ground state is a Mott insulator (MI) and correlated
metals arising from doping MI’s [19] violate the ρ ∼ T 2

scaling. In the other limit where quenched disorder dom-
inates, single particle states are localized in two dimen-
sions and these disorder-induced Anderson insulators of-
ten display variable range hopping behavior [20].

The surprising T = 0 intermediate metallic state that
results from the combination of correlations and disor-
der has been studied theoretically using statistical Dy-
namical Mean Field Theory (DMFT) [21–26], Quan-

tum Monte Carlo [27–29], Exact Diagonalization [30],
Hartree-Fock [31] and typical medium theory [32] and its
cluster extensions [33] that allows direct identification of
Anderson localized states.

Experimental results [6, 34–37] are compatible with
the zero temperature calculations. However, the finite
temperature understanding of this exotic metal and its
scaling is limited and several questions remain. How does
a metal that arises from competing Mott and Anderson
insulators behave at finite temperatures? What temper-
ature scaling does the resistivity of the ensuing metal
display? Is there a dependence of the exponent α on
disorder and interaction strengths that can be tuned?
Are spin or charge cluster states [18] responsible for such
scaling behavior? Answers to these open questions are of
relevance for experiments and theory alike.

In this publication, we study the half-filled Anderson-
Hubbard model at finite temperature using the recently
developed Mean Field-Monte Carlo (MF-MC) technique.
This approach properly incorporates thermal fluctuations
in a mean field theory [38]. Details and benchmarks are
in Supplementary Material Sec. I [39]. Using MF-MC,
here we establish the disorder-interaction-temperature
(V − U − T ) phase diagram. In particular, we observed
a disorder-induced continuous evolution from the Mott
to the Anderson insulators with a strange metal in be-
tween. Our temperature analysis of this region unveils
an intriguing quasi QCP behavior, with a narrow metal-
lic region increasing in width with increasing tempera-
ture resembling a quantum phase transition. Through
optical conductivity and resistivity calculations, we un-
cover a striking behavior: by changing U and V , α can
be tuned (akin to heavy fermions) from linear α = 1, as
in cuprates, to near quadratic. Then disorder and inter-
actions can be used to modify the scaling ρ ∼ Tα.

The model is:

H = −t
∑

〈i,j〉 σ

c†i,σcj,σ+
∑

i

Uni↑ni↓+
∑

i

(Vi−µ)(ni↑+ni↓),
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FIG. 1. (color online) Temperature (T ) vs. disorder (V )
phase diagram at half filling for U/t = 4.0 obtained using
a 322 square lattice. The zero temperature antiferromag-
netic (AFM) Mott insulator (M-I) to gapless AFM insula-
tor (AF-I) at V ∼ 2t, and the subsequent transition to the
paramagnetic metal (PM-M) at V ∼ 3t, are both continuous
within our accuracy. For V > 3.8t at T = 0, we observe
a disorder-induced correlated Anderson insulator (CA-I). Fi-
nally for T/t ∈ [0.08, 0.2] and small V/t, pink region, we find
a gapless PM insulator (PM-I). Details are in the text.

where the first term is the kinetic energy and the second
the standard Hubbard repulsion. ciσ ( c†iσ) annihilates
(creates) an electron at site i with spin σ. The num-

ber operator is niσ = c†iσciσ. The disorder Vi at each
site is chosen randomly in the interval [−V, V ] with uni-
form probability. The chemical potential µ is adjusted to
achieve half filling globally. In MF-MC, we first Hubbard-
Stratonovich decouple the interaction term, by introduc-
ing vector mi and scalar φi auxiliary fields at every site.
The former couples to spin and latter to charge. Drop-
ping the time dependence of the auxiliary fields (Aux.
F.) a model with “spin fermion” characteristics arises.
The Aux. F. are treated by classical MC that admits
thermal fluctuations, and the fermionic sector is solved
using Exact Diagonalization. Details of the considerable
numerical effort involved are discussed in Supplementary

Material Sec I.

1. Phase diagram. Consider the phase diagram shown
in Fig. 1 at the representative value U/t = 4. Various
indicators, such as the (π, π) static magnetic structure
factor [40], density of states (DOS), and optical conduc-
tivity σ(ω) were used (Fig. 2). At T/t = 0.005 the anti-
ferromagnetic (AFM) order is progressively reduced in-
creasing V/t as shown in Fig. 2 (a), and for V ≥ 2.6t
the signal becomes negligible. At V = 0, the magnetic
order starts at T/t = 0.10 upon cooling but the system
remains insulating above this temperature, as expected,

FIG. 2. (color online) Examples of MF-MC data at U/t = 4
used to construct the phase diagram Fig. 1. (a) Static mag-
netic structure factor at q = (π, π). Values of V/t are in the
column. (b) Low-T density-of-states (DOS) N(ω) at various
disorder strengths. (c) DOS ω = 0 weight at the four V/t’s
indicated vs. T/t. Arrow indicates the maximum of N(0)
for V/t = 3.4. (d) ω times the optical conductivity σ(ω), at
T/t = 0.005, for the several V/t’s indicated.

and a paramagnetic insulator (PM-I), is deduced based
on the optical conductivity behavior discussed below. In-
creasing V/t, TN initially slightly increases and then re-
duces with increasing disorder [41]. The metal insulator
boundary decreases roughly linearly with V/t, collaps-
ing to zero at V/t = 2.6. Panel (b) shows the low-T
DOS, N(ω), for various disorder strengths. We find that
the clean-limit Mott gap evolves into a pseudogap gap at
V/t ∼ 2. This pseudogap persists up to V/t = 2.8 and
flattens out for larger V/t, with the weight around ω = 0
decreasing gradually with disorder as the DOS spreads
over a larger energy range due to increasing scattering.
Thus, the AF-I, PM-M and CA-I phases in Fig. 1 are
gapless.

Figure 2 (d) shows ωσ(ω) at T = 0 for different dis-
order values covering the Mott-Insulator, the strange
metal, and the large disorder (CA-I) phases. For V/t ≤
2.0, σ(ω) is clearly gapped. In the narrow range 2.0 <
V/t < 2.6, ωσ(ω) tends to zero as ω → 0 in a non-
linear manner. For 2.6 ≤ V/t ≤ 3.8, ωσ(ω) → 0 lin-
early i.e. σ(ω) is constant at small ω indicating a metal.
For the CA-I, variable range hopping is expected to pro-
vide a ω3ln3(I/ω) behavior [20], where I is a typical en-
ergy scale depending on the localization length. Fig. 3
in Supplementary Material Sec II that discusses our op-
tical conductivity results [42], show that the same be-
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FIG. 3. (color online) (a) ρ (πe2/~a0 units) vs. T/t at U/t = 4
and the various V/t’s in the column (a0 is the lattice spacing,
set to 1). The red arrow at the bottom shows ρmin for V/t =
3.4. (b) Optical conductivity at U/t = 4 and V/t = 3.4
displaying non-Drude behavior, at the T/t’s in the column.
(c) ρ(T ) at special values of U/t and V/t such that the state
is metallic almost in all the T/t range shown. Solid lines are
fits to ρ(0)+ATα. For U/t = 2, 3, 3.5, and 4.0, and the V/t
values indicated (color, right), α is 1.02, 1.35, 1.39, and 1.68,
respectively. (d) The metallic window in the U − V plane at
low temperature T/t = 0.005 is shown by the colored region
(the dashed line just guides the eye). The black region denotes
insulator. The color of the metallic region depicts the value
of α arising from the Tα scaling of ρ(T ).

havior holds across the finite T insulator to metal transi-
tions as well. This numerical criterion, certain subtleties
and consistency with inverse participation ratio (IPR)
are also discussed in Supplementary Material Sec II. We
have used this criterion to determine all metal insulator
boundaries in Fig. 1. Our T = 0 phase boundaries are
in excellent agreement with earlier literature [31, 43] and
our metal and insulating phases both at zero and finite
temperatures are robust against finite size scaling (Sup-
plementary Material, Fig. 4). We now shift the focus to
our main contributions at finite T .

2. Non Fermi liquid metal. The resistivity extracted
from 1/σ(ω) at small ω (see supplementary) is in Fig. 3
(a) for U/t = 4. There are several important features:
(i) dρ/dT becomes positive at large T for all values of
V/t; (ii) For the PM-I regime at V/t = 0 and 1.6, dρ/dT
becomes negative with eventual divergence at the critical
AFM temperature. Further, based on optical conductiv-
ity behavior (Supplementary material Sec.II ) and finite
DOS weight at Fermi energy (N(0)) beyond T/t = 0.08
for V = 0 in Fig. 2 (c), the PM-I is a gapless insula-
tor. For the metallic (V/t = 2.8 and 3.4) and the CA-I
(V/t = 4.4 and 6.6) phases, ρ(T ) saturates at the lowest

T ’s investigated [44]. (iii) There are resistivity minima at
finite T which coincide with the corresponding location
of the peaks in N(0) in Fig. 2 (c) at, e.g., V/t = 3.4. The
NFL nature of the disorder-induced metallic state can be
inferred from panel (b) which shows that σ(ω) has a non-
Drude form with a peak at finite frequency. This peak
is further pushed to higher frequency with increasing T ,
except at very low T when the peak converges to ω/t ∼ 1.
Both ρ(T ) here, and specific heat (Cv) in Supplemen-

tary Material Fig. 5, show low T deviations from FL
behavior consistent with literature on disorder induced
NFLs [18], justifying our “NFL metal” nomenclature.
Consider now the ρ vs. T behavior for the NFL state.

In the metallic regime (V/t = 3.4), the resistivity mini-
mum occurs at T/t ∼ 0.1. From Fig. 2 (c) at V/t = 3.4,
the location of ρmin coincides with the peak in N(0) at
T/t ∼ 0.055. This non-monotonic dependence ofN(0) on
T agrees with DQMC studies of the Hubbard model [45]
for V = 0.
The initial increase ofN(0) is due to thermally induced

fluctuations that enhance the DOS weight at ω = 0. At
high T , the scattering of fermions from the Aux. F.’s
suppress N(0), and this non-monotonicity is reflected in
the metallic-like thermal behavior of ρ(T ). In summary,
at low T the initial increase of the DOS at the Fermi
level forces dρ/dT to be negative, while at high T this
DOS is suppressed again because of the localized spins
and dρ/dT changes sign.
3. Scaling of resistivity. In Fig. 3 (c) we show ρ(T ) for

combinations of U/t and V/t where the system is a metal
over a wide temperature range. The full map of the low
temperature metallic region in the U/t− V/t plane is in
Fig. 3 (d). The resistivity data is fitted to ρ(0) + ATα

for each case to extract α [46]. For small/intermediate
values of (U/t, V/t) (open circles), ρ(T ) grows linearly
with T in the range analyzed. For larger U/t (and
corresponding V/t) α increases from ∼1.0 to 1.7 for
U/t = 2, V/t = 3.4. As shown in Fig. 3 (d), the metallic
window at T/t = 0.005 occurs roughly around the line
U ∼ 1.25V [47]. The dashed line guides the eye and it
envelops the metallic region. The metallic-regime color
scale indicates the value of α in the temperature fit of
ρ(T ). For up to U/t = 2.5, α ∼ 1 growing slowly with U/t
(the smallest values checked are U/t = 0.5, V/t = 0.5).
For larger U/t, V/t > 2.5, α grows reaching a maximum
value close to 2 for U/t = 5 [48]. This α ∼ 2 does not
imply a FL but we believe it is just one of the possible
transport exponents that occurs in our system in its slow
evolution. For even larger U/t, within our precision the
metallic region closes. Finally, old DQMC calculations
[29], show hints of such scaling, exhibiting robustness of
our results in presence of quantum fluctuations.
4. Discussion. To better understand the combined ef-

fect of disorder and interaction in the metallic phase, in
Fig. 4 (a) we show the variance of the local density {ni},
defined as δn(U, V, T ) = 〈

√

〈n〉2 − 〈n2〉〉. The outer an-
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FIG. 4. (color online) Fluctuations in the charge density vs.
T at various U/t’s and V/t’s (color), in the metallic regime.
Inset contains the same data up to T/t = 10. (b,c,d) show
real-space maps of |ψ(r)|2 at the Fermi energy using 322 sys-
tems at T/t = 0.2 and coupling strengths (U, V ) = (2.0t,
1.5t), (3.0t, 2.25t) and (4.0t, 3.4t), respectively. Color scale
indicates the range of values for |ψ(r)|2 in 10−3 units. Data
in (a) to (d) are averaged over 10 MC samples for a fixed
disorder realization.

gular brackets imply averaging over MC samples at fixed
T , while the inner ones are the quantum average within
a single MC sample. There are two sources of disorder
that control the variance of δn(U, V, T ). First is the
static disorder (V ) with variance δV and the second are
the Aux. F.’s. These Aux. F.’s directly couple to the
fermions and indirectly to the disorder through the local
fermion occupations (Sec. I of the Supplementary Mate-

rial). Then, the Aux. F. also provide an inhomogeneous
background that at low temperatures follows the presence
of intrinsic static disorder. But at temperatures where
kBT ≥ δV , the intrinsic disorder (V ) is unimportant and
the Aux. F. configurations become homogeneous in aver-
age. Thus, δn(U, V, T ) remains non zero at low T while
it tends to zero at large T , on MC sample averaging. This
behavior is observed in the inset of Fig. 4 (a). In the
main panel we show the same data between T/t = 0.01
and 1. We find a systematic increase in δn(U, V, T )
with increasing U/t and V/t. This variance manifests as
real-space charge clusters as shown in Fig. 4 (b) to (d)
that contains maps of |ψ(r)|2 at fixed T , MC sample av-
eraged, for states at the Fermi energy. With increasing
U/t and V/t, the charge clustering and the charge fluc-
tuations magnitude increase systematically following the
increase in δn(U, V, T ). This provides a controlled en-
hancement in spatially inhomogeneous background from
which the fermions scatter [49].

It is known that fermions coupled to classical variables
such as disorder [50], adiabatic phonons [51] etc. can
exhibit charge clustering, metallic glasses, and NFL be-

havior. Moreover, disorder-induced rare fluctuations (of
charge/spin) similar to the results in Figs. 4 (b) to (d) are
known to stabilize electronic Griffith’s phases and NFL
behavior [52, 53] with tunable critical exponents [54].

In our case, not only the quenched disorder but also
the Aux. F. fluctuations play the role of the classical
scatterer that give rise to NFL scaling. Such charge clus-
ters and NFL behavior has been experimentally observed
in the 2DEG near a T = 0 quantum critical point [12–
14]. Here, within MF-MC, we have found such a “charge
cluster metal” in the half-filled Anderson Hubbard model
and also observed that their deviation from FL theory
can be tuned. This tunability allows us to show that, in
a single model Hamiltonian, the resistivity scaling with
T can vary between linear to near quadratic, features
observed in real NFLs like cuprates and heavy fermions.
Our results thus represent progress towards identifying
a single model system with NFL behavior transcending
many material families.
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[19] X. Deng, J. Mravlje, R. Žitko, M. Ferrero, G. Kotliar,

and A. Georges, Phys. Rev. Lett. 110, 086401 (2013).
[20] Y. Imry, Introduction to Mesoscopic Physics (Oxford

University Press on Demand, 2002).
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