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We have measured fully differential cross sections for electron capture in 75 keV p 

+ H2 collisions with subsequent dissociation of the intermediate molecular H2
+ ion 

by vibrational excitation using different projectile coherence lengths. Data were 

obtained for two molecular orientations as a function of projectile scattering angle. 

Two types of interference, single- and molecular two-center interference were 

identified. The two-center interference structure is phase-shifted by π compared to 

what we expected. Furthermore, the presence of projectile coherence effects could 

be reconfirmed.  



One of the most important goals of studies on atomic fragmentation processes is to advance 

our understanding of the few-body problem (FBP) [e.g. 1,2].  The essence of the FBP is that 

the Schrödinger equation is not analytically solvable for more than two mutually interacting 

particles even when the underlying forces are precisely known.  Therefore, elaborate 

numerical models have to be developed for its theoretical analysis, and the approximations 

entering in these models need to be tested by detailed experimental data.  To this end, 

numerous kinematically complete experiments on atomic fragmentation processes induced by 

charged particle impact have been performed [3,4]. 

The most basic fragmentation process in ion-atom collisions is single target ionization.  For 

this process, the primary interaction occurs between the projectile and a target electron.  In 

fact, it is remarkable how well the basic features observed in measured cross sections can 

qualitatively be reproduced by theories which ignore the interaction between the nuclei (NN 

interaction) in the collision, especially for small perturbation parameters (projectile charge to 

speed ratio η = Qp/vp) [e.g. 5-7].  Nevertheless, in order to obtain good quantitative agreement 

it is important to account for the NN interaction, especially at large η [e.g. 8,9].  However, 

this interaction usually only plays a “passive” role in inelastic processes in so far as it does not 

directly cause target fragmentation by actively triggering electronic transitions.  Such a 

process is not impossible; for example the projectile could undergo a head-on collision with 

the target nucleus causing it to recoil at such a large speed that it cannot be followed by the 

electron.  But the cross section for this mechanism is negligible. 

For molecular targets, the role of the NN interaction in the collision dynamics can be 

qualitatively different from atomic targets because not only are the electrons bound inside the 

molecule, but the atoms are also bound to each other.  Therefore, additional inelastic channels 

like dissociation are opened for molecular targets.  Dissociation can proceed through an 

electronic transition to a repulsive state, but it can also be caused by vibrational excitation of 



the nuclear motion (e.g. [10]), in which the NN interaction can play an active role.  Fully 

differential studies of dissociative processes induced by charged particle impact are rare.  

Three kinematically complete experiments on dissociative capture of H2 or H2
+, two of them 

using reversed kinematics, were performed for atom/ion impact [11-13].  In two of them, 

dissociation by electronic transitions was investigated.  In the other, the interest was focused 

on the nuclear wavefunctions of the molecule for different vibrational states and no fully 

differential cross sections (FDCS) were reported.  FDCS for dissociation of H2 by vibrational 

excitation, accompanied by ionization, were measured for electron impact [14].  To the best of 

our knowledge, no measured FDCS for dissociative processes through vibrational excitation 

induced by ion impact have been reported yet.  

Another important aspect of collisions with molecular targets that was discussed in recent 

years is a potential influence of projectile coherence effects on the collision dynamics (e.g. 

[15-20]).  Experiments were performed for different transverse coherence lengths of the 

projectiles by placing a collimating slit at varying distances from the target. Interference 

structures were present for large coherence lengths, but (nearly) absent for small coherence 

lengths.  Earlier, a similar dependence of the interference visibility on the coherence length 

was studied for Ar atoms interacting with a standing light wave [21].  Later, such effects were 

observed for atomic targets [22-24].  In another recent study, performed for a collision system 

corresponding to small η, no significant differences in the cross sections for varying 

coherence lengths were found [25].  However, there the coherence lengths were orders of 

magnitude larger than the small coherence length studied in [22] for a very similar η and 

larger than the size of the target atom.    Therefore, for small η the role of coherence effects is 

not conclusively settled yet and further experimental and theoretical work is needed.  In 

contrast, for η close to unity by now there is an extensive literature on experimental and 

theoretical studies [e.g. 15-18,20,26,27] supporting the interpretation that scattering cross 



sections can be significantly affected by the projectile coherence properties.  In this regime, 

experimental studies now enter a phase in which such coherence effects are used as a tool to 

sensitively investigate the few-body reaction dynamics. 

In this Letter, we report the first FDCS for capture accompanied by dissociation of H2 through 

vibrational excitation.  The data provide additional support for the presence of projectile 

coherence effects. More importantly, by analyzing the ratios between the FDCS for coherent 

and incoherent projectiles interference structures could be investigated very sensitively.  Two 

types of interference, single- and two-center interference, were identified. In the latter an 

unexpected phase shift in the interference pattern was observed.  

The experiment was performed as follows. A 75 keV proton beam was passed through 

vertical and horizontal collimating slits with widths of 150 μm.  The horizontal slit (y-slit) 

was placed at a distance L1 = 50 cm and the vertical slit (x-slit) at a distance L2 = 6.5 cm from 

the target.  These slit geometries correspond to coherence lengths of Δx ≈ 1.0 a.u. and Δy ≈ 

3.3 a.u., respectively (see [17] for a detailed analysis of the coherence lengths at different L).  

After traversing the target region the projectiles were charge-state analyzed by a switching 

magnet and the neutralized beam component was detected by a two-dimensional position 

sensitive multi-channel plate detector.  From the position information the polar scattering 

angle θp was determined separately for scattering in the x- and y-directions, i.e. cross sections 

were recorded for projectiles with a small and a large coherence length simultaneously under 

identical experimental conditions. 

A cold H2 target beam (T < 2 K) was generated with a supersonic gas jet and intersected the 

projectile beam.  This temperature corresponds to thermal energies small compared to 

rotational and vibrational excitation energies.  A capture process in the collision could lead to 

either an H2
+ recoil ion or, if accompanied by dissociation, to two molecular fragments, of 

which at least one must be a proton.  The recoil ions were extracted by an electric field of 



about 50 V/cm and detected by a two-dimensional position sensitive multi-channel plate 

detector, which was set in coincidence with the projectile detector.  In the coincidence time 

spectrum the H2
+ ions and protons are represented by separate peak structures due to their 

mass-dependent time of flight.  The shape of each peak contains the momentum information 

in the direction of the extraction field.  The other two momentum components are obtained 

from the position information.  The momentum of the undetected molecular fragment is 

determined by momentum conservation.  Finally, the kinetic energy release (KER) in the 

dissociation was calculated from the momenta of the fragments. 

FDCS for dissociative capture were extracted for a fixed KER of 0 - 2 eV and for various 

fixed molecular orientations as a function of θp.  Such a small KER selects events in which 

dissociation is caused by vibrational excitation of the molecule rather than by a transition of 

the second electron to a repulsive state [e.g. 10,14].  For each orientation FDCS were obtained 

for incoherent and coherent projectiles by setting conditions on scattering in the x- and y-

directions, respectively.  In Fig. 1, these FDCS are shown for two molecular orientations, 

illustrated in the top panels of Fig. 1, both of which are perpendicular to the initial projectile 

beam axis. One orientation (upper left panel) is perpendicular also to the transverse 

component of the momentum transfer qtr while the second orientation is parallel to qtr (upper 

right panel).  In the following we refer to these orientations as the perpendicular and parallel 

orientations, respectively.  The open (closed) symbols represent the incoherent (coherent) 

FDCS. 

Some differences between the various data sets can be seen.  The θp - dependence of the 

FDCS for the perpendicular orientation is narrower than the one for the parallel orientation.  

As a result, statistically significant data could only be obtained up to about 2.5 mrad, while for 

the parallel orientation this range extends to about 6 mrad.  Furthermore, in the coherent data 

for the perpendicular orientation we observe a structure at small θp which is missing in the 



incoherent data and in both data sets for the parallel orientation: the coherent FDCS are above 

the incoherent FDCS for small θp, they cross the latter near θp = 0.3 mrad, reach a shallow 

minimum at about θp = 0.9 to 1.0 mrad, and approach the incoherent FDCS again near θp = 

1.2 mrad.  It is not clear whether the two data points below and above 1.75 mrad represent 

another minimum or just statistical fluctuations. 

For the parallel orientation significant differences between the incoherent and coherent data 

sets are only discernable for θp > 1.0 mrad.  For this orientation significant structures are 

found at large θp suggesting interference minima at about 1.5 and 3.2 mrad and maxima 

around 2.2 and possibly at 4.8 mrad.  These structures are also present in the incoherent data, 

however, they are significantly more pronounced in the coherent case as we will illustrate by 

analyzing the coherent to incoherent cross section ratios. 

The oscillations in the FDCS are more prominent in the ratio R between the coherent and 

incoherent FDCS, which is plotted for the perpendicular orientation (R⊥) in the left panel of 

Fig. 2.   These ratios represent the interference term; however, it is not self-evident what type 

of interference is reflected by the oscillations.  The phase angle in two-center interference is 

given by prec•D, where for a capture process the recoil ion momentum prec is equal to q, and D 

is the internuclear separation vector in the molecule [e.g. 12-14].  For the perpendicular 

orientation this dot product is zero so that here two-center interference cannot lead to any 

structure in R.  We therefore interpret the oscillations observed for the perpendicular 

orientation as being caused by single-center interference.  There, different impact parameters 

leading to the same scattering angle interfere with each other [24]. 

A simple model single-center interference term was suggested by Sharma et al. [17] as I1 = (1 

+ α cos(qtrΔb), where α accounts for a reduction in visibility of the interference due to 

incomplete coherence even at the large slit distance and due to the experimental resolution.  



Δb represents an effective impact parameter range contributing to the dissociation process, 

which we approximate as being independent of qtr.  A similar analysis was performed for 

single capture in energetic p + He collisions [28].  The solid curve in the left panel of Fig. 2 

shows a best fit of the single-center interference term to the measured ratios yielding α = 0.4 

and Δb = 1.3 a.u.  This value of Δb appears to be a reasonable reflection of the effective 

dimension of the diffracting object.  However, because of the approximations entering in this 

analysis it represents only a crude estimate. 

The center panel of Fig. 2 shows the coherent to incoherent FDCS ratios for the parallel 

orientation R||.  As seen already in the FDCS in Fig. 1, R|| is nearly flat up to about 0.8 to 1.0 

mrad.  However, at larger θp, between approximately 1 and 4 mrad, pronounced oscillations 

are observed, which shows that indeed the structures in the coherent FDCS are significantly 

more pronounced than in the incoherent FDCS, as mentioned earlier.  Both single- and two-

center interference can contribute to this orientation so that we expect R|| to be determined by 

a product of both interference terms I1I2.  We make the approximation that Δb is the same for 

the parallel and perpendicular orientations, which is not necessarily the case.  With that 

assumption we obtain the two-center interference term I2 as the ratio R2 = R||/R⊥, which is 

plotted in the right panel of Fig. 2.  In these double ratios the oscillating pattern extends to 

angles smaller than 1 mrad.  The nearly flat behavior of R|| at small θp can now be understood 

as a compensation between single- and two-center interference.  While single-center 

interference alone would make R|| drop with θp increasing from 0, two-center interference 

alone would make it increase. 

A striking feature of the θp-dependence of R2 is that there is a minimum at θp = 0, while the 

two-center interference term I2 = 1 + α cos(qtrD) predicts a maximum.  This minimum 

suggests that there is a shift of π in the phase angle of the interference term.  The dotted curve 



in the right panel of Fig. 2 shows the two-center interference term I2 with a phase shift of π 

incorporated.  Here, we used 1.2 a.u. instead of the equilibrium distance of 1.4 a.u. for D 

because vibrational dissociation mostly occurs near the inner turning point [14], i.e. at the 

minimum distance in the Franck-Condon region Dmin ≈ 1.2 a.u. [29].  Reasonably good 

agreement with R2 is achieved; however, the calculated interference term appears to be 

slightly shifted to larger θp.  This shift is expected because although vibrational dissociation 

occurs mostly at the inner turning point, the contributions from other D within the Franck-

Condon region are not necessarily negligible.  We therefore also calculated I2 averaged over 

the entire Franck-Condon region.  The dashed curve shows this calculation (unrealistically) 

assuming that all D contribute equally.  Now, with increasing θp I2 is increasingly shifted to 

smaller θp.  This is not surprising either because the influence of large D on the interference 

term is now overestimated. The actual distribution of D contributing to vibrational 

dissociation is not known.  However, the comparison between the data and the dotted and 

dashed curves suggest that the data may be reproducible by some distribution in between the 

extremes of only a single-valued (at D = 1.2 a.u.) and a uniform distribution of D.  As an 

example, the solid curve in the center and right panels shows I2 averaged over the Franck-

Condon region giving each D a weight f = (3.4 – 2D)2, so that f = 1 for D = 1.2 a.u. and f = 

0.01 for D = 1.65 a.u. (outer turning point).  This calculation is in very good agreement with 

the measured R2.  The deviation seen in R|| at small θp is due to the contributions from single-

center interference.   This shows that our data are consistent with the assumption that 

vibrational dissociation occurs mostly at the inner turning point and falls off with increasing 

D; but it does not prove that f represents the correct distribution of D.  Most importantly, the 

data cannot even be remotely reproduced by I2 for any distribution of D if the phase shift of π 

is not included, in which case minima and maxima would be reversed compared to the 

measured data. 



It should be noted that even the small KER analyzed here is much larger than typical 

rotational energies of the molecule (a few meV).  Therefore, the axial recoil approximation 

(ARA) should be valid, meaning that the momentum direction of the detected fragment does 

reflect, to a good approximation, the molecular orientation at the instance of the collision.  

This is confirmed by our measured cross sections as a function of the molecular orientation 

(see Fig. S1 in the supplemental material), which exhibit maxima parallel to the projectile 

direction and a minimum perpendicular to it.  If the ARA would be significantly violated this 

angular dependence would be flat.  If the ARA is valid, then without any phase shift a 

maximum should be observed perpendicular to the projectile direction and minima parallel to 

it.  Therefore, our measured orientation-dependent cross sections further confirm the presence 

of a π phase shift. 

The same phase shift was also reported for dissociative capture [11] and excitation [30] in H2
+ 

+ He collisions.  In both cases the phase shift was explained by a change of symmetry in the 

electronic state during the transition.  However, no phase shift was found in dissociative 

capture in p + H2 collisions [13,31].  The authors argued that this showed that the dominant 

dissociation channel was one where the first electron is captured from a symmetric molecular 

state while the second electron is excited to a molecular ungerade state.  On the other hand, 

based on the symmetry arguments given in [11] a phase shift of π would be expected in this 

case.  At the same time, a shift of the interference pattern was observed in dissociative 

ionization by electron impact [14], where no change of symmetry in the electronic state 

occurs, like in the present data.  Nevertheless, the shift of the interference pattern was 

reproduced by a calculation, in which the interference term is included from first principles 

[14].  A comprehensive evaluation of these experimental and theoretical results suggests that 

the two-center interference pattern is not fully understood yet: while two data sets ([11,30]) 

are consistent with a π phase shift due to a change in symmetry in the electronic state, three 



data sets ([13,14] and the present data) appear to behave opposite to the expectation based on 

the symmetry of the electronic state.  Therefore, apart from the electronic symmetry there 

appear to be other causes that can lead to a phase shift in the interference term. 

We have calculated the FDCS for the parallel orientation using a molecular eikonal approach.  

This method was described previously and successfully reproduces FDCS for single-capture 

in 75 keV p+H2 collisions [32]. Conceptually, all interactions are accounted for, including the 

NN interaction, and treated fully quantum-mechanically.  Since the molecular target wave 

function is modeled in terms of atomic states, two-center interference is not included directly.  

Rather, it is incorporated by multiplying the cross sections with the interference term I2 = 1 + 

cos(qtrD + δ) (see e.g. [32,33]) averaged over the Franck-Condon region using the same 

weight factor f as for the curve in the right panel of Fig. 2.  The projectile coherence 

properties are accounted for using the method of Sarkadi et al. [20], i.e. by describing the 

projectiles in terms of a Gaussian wave packet, where the width reflects the coherence length. 

The dotted curve in the right panel of Fig. 1 shows this calculation for the parallel orientation, 

a coherence length of 3.3 a.u., and δ = 0.  It is in poor agreement with experiment.  However, 

the same calculation with a phase shift of δ = π is in excellent agreement up to scattering 

angles of about 1.2 mrad (except for θp < 0.1 mrad, which is smaller than the angular 

resolution) for the coherent case (solid curve) and up to 1.0 mrad for the incoherent case 

(dashed curve).  Between approximately 1.2 and 3.5 mrad the calculation reproduces the 

location of the oscillation extrema rather well, however, it systematically underestimates the 

magnitude of the FDCS.  Only for angles larger than 3.5 mrad is the agreement between 

experiment and theory poor.  We also note that theory agrees with experiment that even for 

the incoherent case a structure is visible in the FDCS, which is, however, weaker than in the 

coherent case.  This reflects that the interference visibility does not abruptly drop to zero once 



the coherence length drops below the dimension of the diffracting object, but rather this is a 

smooth transition.1 

In conclusion, we have measured fully FDCS for capture accompanied by dissociation 

through vibrational excitation.  In the FDCS for fixed molecular orientations as a function of 

scattering angle we identified molecular two-center interference as well as single center 

interference.  Our data are qualitatively consistent with a molecular eikonal calculation, which 

assumes a phase shift of π in the two-center interference term.  However, the origin of this 

phase shift is currently not understood.  Furthermore, at large scattering angles there are 

significant quantitative discrepancies between experiment and theory.  Therefore, further 

theoretical studies are needed, which should treat two-center interference from first principles. 

This work was supported by the National Science Foundation under grant no. PHY-1401586, 

by Universidad Nacional de Cuyo (Argentina) under grant 06/C480, and by the project ELI-

Extreme Light Infrastructure-phase 2 (Project No. CZ.02.1.01/0.0/0.0/15_008/0000162) from 

the European Regional Development Fund. 

Figure Captions 

Fig. 1: Fully differential cross sections (lower panels) for dissociative capture leading to KER 

= 1 ± 0.5 eV and for the two molecular orientations illustrated in the top panels as a function 

of scattering angle measured with incoherent (open symbols) and coherent (closed symbols) 

projectiles.  Both molecular orientations are perpendicular to the beam axis, but one (left 

panels) is also perpendicular to the transverse component of the momentum transfer q⊥ while 

the other (right panels) is parallel to q⊥.  Dotted curve, coherent eikonal calculation with δ = 0 

in the two-center interference term; dashed (solid) curves, incoherent (coherent) eikonal 

calculations with δ = π in the two-center interference term. 

                                                            
1 In fact, according to the van Zittert – Zernicke theorem the visibility reappears in an oscillatory manner, 
although with reduced amplitude, as the coherence length is further decreased. 



Fig. 2: Left panel; ratios R⊥ between the coherent and incoherent FDCS of Fig. 1 for the 

perpendicular orientation.  The solid curve shows I1 calculated for Δb = 1.3 a.u.  Center panel; 

ratios R|| between the coherent and incoherent FDCS of Fig. 1 for the parallel orientation.  

Right panel; double ratios R2 = R||/R⊥. The curves in the center and right panels show the two-

center interference term for δ = π and D = 1.2 a.u. (dotted curve), averaged over all D 

assuming equal weights (dashed curve), and averaged over all D with a weight factor 

decreasing with increasing D (solid curve) (see text). 
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