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Photoionization of molecular species is, essentially, a multi-path interferometer with both experi-
mentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of
impulsively aligned molecular targets (N2) is used to provide a time-domain route to “complete”
photoionization experiments, in which the rotational wavepacket controls the geometric part of the
photoionization interferometer. The data obtained is sufficient to determine the magnitudes and
phases of the ionization matrix elements for all observed channels, and to reconstruct molecular
frame interferograms from lab frame measurements. In principle this methodology provides a time-
domain route to complete photoionization experiments, and the molecular frame, which is generally
applicable to any molecule (no prerequisites), for all energies and ionization channels.

Photoionization is an interferometric process, in which
the final observable results from a coherent sum over
multiple quantum paths to a set of final continuum pho-
toelectron states |k, l,m〉 [1, 2]. Interferences between
these components are manifest in the observable energy
spectra and photoelectron angular distributions (PADs)
the latter of which can be considered as a particularly
high information content observable, extremely sensitive
to the phases of the partial waves |l,m〉 [2–5]; conse-
quently, PADs have been investigated in a large range of
control and metrology scenarios [6, 7] . In the context of
phase-sensitive metrology, the goal is to obtain the full
set of complex photoionization matrix elements, hence
characterise the photoelectron wavefunction, by analy-
sis of sets of PAD measurements - this is a “complete”
photoionization experiment [8, 9].

In the molecular case, the number of final |l,m〉 states
is typically large, and obtaining a sufficient dataset for
a complete experiment remains a challenge. In the en-
ergy domain, a number of different schemes have been
demonstrated in both the laboratory (LF) and molec-
ular frames (MF) [10–16]. The common theme to all
these measurements is some form of control over the ex-
perimental contributions to the photoionization interfer-
ometer (e.g. rotational state, polarization geometry), to
which the intrinsic molecular contributions remain invari-
ant. Limitations of previous attempts have been the abil-
ity to obtain a sufficiently large dataset, and molecular
specificity in the methodologies, i.e. prerequisites such as
low density of states [14], resonances [15] or dissociative
channels [11–13].

In the time-domain, rotational wavepackets can be uti-
lized to control the geometric part of the interferome-
ter. In this case, a high degree of spatio-temporal con-
trol of the axis distribution (alignment) of the ionizing
molecular ensemble in the LF can be obtained via prepa-

ration of a broad rotational wavepacket with IR laser
pulses. Hence, at any given time-delay of the ionizing
laser pulse, a different molecular alignment and set of
polarization geometries are coherently probed. Although
this idea is conceptually obvious, the theory is complex;
it has been elucidated by multiple authors (e.g. refs.
[5, 17–21]), but - to date - there have been no experimen-
tal demonstrations beyond the limiting case of a narrow
wavepacket prepared via resonant excitation [15, 19, 22]
(cf. rotational coherence spectroscopy [23, 24]), and an
exploration in the related case of high-harmonic spec-
troscopy from an impulsively aligned sample [25]. While
experimental methods for preparing rotational wavepack-
ets, and measuring PADs, are relatively well established
[6, 19, 26, 27], the analysis of such experiments remains
challenging, since both the rotational wavepacket and
the photoionization dynamics must now be fully charac-
terised. However, the benefits are significant - the time-
domain methodology is, in principle, completely general
with no molecule-specific prerequisites; additionally the
use of high harmonics for ionization provides channel
and energy multiplexing in each time-domain measure-
ment, resulting in an extremely high information content
metrology [5, 27, 28]. Furthermore, if the determination
of the photoionization matrix elements is of sufficient fi-
delity, one can reconstruct the MF interferograms with-
out the necessity for direct MF measurements. In gen-
eral, such measurements are desirable for detailed under-
standing of molecular processes [29].

Here we present a general time-domain approach to
complete photoionization experiments in molecules. Ex-
perimentally, a double-pulse impulsive alignment scheme
is used to create a broad rotational wavepacket in N2 [30–
32]. High harmonics of a 267 nm driving field are used
to ionize the aligned ensemble, and velocity-map imag-
ing (VMI) provides energy, angle and time-resolved pho-



2

toelectron interferograms. A bootstrapping methodol-
ogy is employed to analyse the data, in which (1) the
prepared rotational wavepacket is characterised without
knowledge of the intrinsic molecular photoionization dy-
namics [33] and (2) these results feed into a protocol for
the determination of the channel-specific ionization ma-
trix elements. As a test of the results so obtained, the
MF interferograms (as a function of polarization geome-
try) are reconstructed and compared with ab initio cal-
culations. An outline of the method, and the key results,
are presented herein for the general reader; interested
readers can obtain an extended presentation and discus-
sion, including numerical data and analysis codes, in an
online repository we generically term as Supplementary
Material (SM) [34]. This repository is broadly in line
with Open Science/TOP guidelines [35], and it is hoped
that this provides a foundation for other investigators to
explore and build on the methodology presented herein.

Experiment : laser pulses were generated by a
Ti:sapphire amplifier (100 Hz, 11 mJ, 800 nm, 50 fs).
Approximately 3.5 mJ was used to generate the third
harmonic (267 nm, ∼0.05 mJ, ∼100 fs) via double and
sum mixing stages in β-BBO. The output was filtered
by dichroic mirrors and then sent into a vacuum cham-
ber where high harmonics were generated from a pulsed
gas jet of argon. Harmonics were then sent through a
200 nm-thick aluminum foil to filter out the driving laser
light; the final spectrum was dominated by harmonics
5 (H5, hν=23.3 eV) and 7 (H7, hν=32.6 eV). The re-
mainder of the initial 800 nm beam (7.5 mJ) was sent
to a Michelson interferometer; the two replicas of the
pulse generated formed alignment pulses. The alignment
and filtered harmonic beams were recombined (on a ho-
ley mirror) and focussed into the interaction region of a
VMI spectrometer [26]. Spatial and temporal superpo-
sition of the alignment pulses and the harmonic pulses
was achieved by maximizing the AC Stark shifts in the
photoelectron spectrum of argon. The estimated laser
parameters in the interaction region for each alignment
pulse are 0.5 mJ, 100 fs at focus, resulting in a peak inten-
sity I = 20 TW/cm2. All beams were linearly polarized,
and the data reported herein was obtained for a parallel
polarization geometry (Fig. 1(a)). The delay between
the two pump pulses was experimentally optimized (for
maximal alignment) at 3.76 ps, near the rising edge of
the half revival induced by the first pulse [32].

Figure 1 presents three example photoelectron images
from molecular nitrogen (99.999% purity, 4.8 bar back-
ing pressure, 250 µm nozzle) and corresponding photo-
electron spectra. The complete dataset consists of 150
temporal steps in 67 fs increments from t =-0.5 ps to
+9.5 ps, where t=0 is defined as the peak intensity of the
second alignment pulse. On average, about 30000 laser
shots were accumulated at each delay. Additional signals
that monitored gas density in the VMI, harmonic source
brightness and background contributions (ATI from the

alignment pulses, scattered light, residual background
gas signals) were taken together with the data, providing
calibration and background measurements.
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Figure 1. VMI photoelectron images from (a) isotropic
(no alignment pulses) (b) aligned (c) anti-aligned nitrogen
molecules. The polarization of both alignment pulses and the
XUV pulse are linear as indicated in (a). (d) The electron
yields, labels provide cationic state assignments for the ob-
served features.

The observed angular distributions are most generally
expressed as an expansion in spherical harmonics:

S(θ, φ, t) =
∑
L,M

βL,M (t)YL,M (θ, φ) (1)

where βL,M (t) are the expansion coefficients. For cylin-
drically symmetric cases, which applies to all LF quan-
tities discussed herein, M = 0, hence the angular de-
pendence is reduced to a function of θ, and the angle φ
is redundant. The LF symmetry also restricts terms to
even-L only. The experimental data analysis consisted
of inverting each background-subtracted VMI image us-
ing the pBaseX algorithm [36], providing expansion co-
efficients for each photoelectron image as a function of
radius, subsequently averaged over each photoelectron
band (Fig. 1(d)) to provide βL,M (t) for each ionization
channel, hereafter denoted as the X, A and B channels,
referring to ionization into the ground, first and second
excited states of the ion (see Fig. 1). Selected time-
domain results are shown in Figs. 2, 3 for H5 X channel
(full presentation in SM [34]).

Theory : The βL,M (t) can further be expanded in terms
of the contributing physical factors:

βL,M (t) =
∑
K,Q

∑
α,α′

γα,α
′

K,QD
∗
αDα′

AK,−Q(t) (2)
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In this form, all of the angular momentum coupling
terms are denoted by γ, and can be defined analytically.
AK,−Q(t) are the time-dependent axis distribution mo-
ments (ADMs) arising from the rotational wavepacket,
and define the spatial alignment of the molecular ensem-
ble: the full axis distribution in the LF can be described
as P (θ, φ, t) =

∑
K,QAK,−Q(t)YK,Q(θ, φ) (cf. Eqn. 1).

The ADMs couple geometrically to the ionization dy-
namics - the intricate details of this coupling dictates
the response of different partial waves to the ADMs,
and different revivals in the rotational wavepacket are
sensitive to different aspects of the ionization dynamics
[21]. The Dα are the symmetrized ionization matrix el-
ements (complex) [37] to be determined. All other re-
quired quantum numbers are denoted α, and the coher-
ent summation is obtained by summing over all possible
pairs of each quantum number. The full form of Eqn.
2, which explicitly shows all summations (all interfering
paths) which contribute to each observable βL,M (t), is
given in the SM [34]. This treatment follows the formal-
ism of Underwood & Reid [17, 38, 39] and is applicable to
single-photon ionization in the dipole limit. In the anal-
ysis described herein, it is assumed that the ionization
matrix elements are constant over each observed pho-
toelectron band, which is expected to be a reasonable
approximation in this case. In cases where this approxi-
mation does not hold, the retrieved matrix elements will
be averaged over any underlying structure or dynamics
(e.g. range of nuclear geometries probed, continuum res-
onances) [18].

Evidently, the above equation can be recast as

βL,M (t) =
∑
K,Q

CL,MK,QAK,−Q(t) (3)

where the coefficients CL,MK,Q contain all the terms in the
brackets in Eq. 2. Since this equation is linear in the
ADMs, the measured βL,M (t) can be used to determine
the ionization dynamics in this phenomenological form
- such solutions of Eq. 3 constitute the first part of the
bootstrapping procedure [33].

Analysis: The ADMs can be computed by solving
the Time Dependent Schrödinger Equation (TDSE) for
a linear rigid rotor rotor in a linearly polarized non-
resonant pulse. Although the CL,MK,Q are channel depen-
dent, the axis distribution is universal; hence fits to dif-
ferent L and/or ionization channels can be performed as
a rigourous cross-check on the results. In this case, com-
putation of the ADMs was carried out for rotational tem-
peratures Trot = 1 K to 30 K in 1 K steps and laser inten-
sities I = 10 TW/cm2 to 30 TW/cm2 in 2 TW/cm2 steps
for each pulse. The delay between pulses and their du-
rations were kept fixed to the experimentally determined
values. The calculated ADMs were stored and a linear re-
gression to solve Eq. 3 was carried out for each parameter

set on the measured β0,0(t), β2,0(t) and β4,0(t) parame-
ters for the X-channel. Each regression was performed
independently, and I = 20 TW/cm2 for each pulse and
Trot = 15 K provided the best fit in all three cases, in
good agreement with the experimentally estimated val-
ues. The fits are shown in Fig. 2, along with a compar-
ison with β6,0(t) obtained using the same parameter set
(I and Trot). Given the fidelity of the fits, the ADMs
(Kmax = 6) obtained for these parameters are assumed
to accurately describe the experimentally prepared axis
distributions, and the resultant axis distribution P (θ, t)
is shown in Fig. 2.
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Figure 2. Molecular alignment determination. (Top) Exper-
iment (solid lines) and fit results (dashed) to eqn. 3, for
L = 0, 2, 4, 6 (Legendre polynomial expansion). (Bottom)
Calculated axis distribution P (θ, t) determined from the fit
(I = 20 TW/cm2, Trot = 15 K), inset shows 〈cos2(θ, t)〉 for
this distribution (a commonly used indicator of the degree of
alignment achieved [21, 40, 41]). The temporal axis is defined
by the second pulse (t = 0), and shows the 1/2 and full re-
vivals at the expected delays of 4.2 and 8.4 ps respectively,
as well numerous higher order structures indicating the the
excitation of a broad angular momentum wavepacket.

Although the retrieved coefficients CL,MK,Q contain in-
formation on the ionization dynamics [33], it is prefer-
able to use the resulting ADMs within the full ioniza-
tion framework of Eq. 2 to directly retrieve the intrinsic
molecular ionization dynamics defined by Dα. This con-
stitutes the second stage of the bootstrapping procedure.
The multiple interfering pathways set the requirement for
a high information-content dataset, and the equations
are highly non-linear multivariate quadratic equations.
Careful sampling of the solution hyperspace is required
in order to ensure unique results: this step was there-
fore broken down into sub-steps to allow (a) statistical
sampling and (b) further bootstrapping. In (a) repeated
coarse fits with minimal information content (selected ex-
perimental measurements with distinct ADMs) and ran-
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domised seed parameters were employed [42], while (b)
took the best fit result(s) as seeds for fits with higher
information content and/or more stringent convergence
criteria, based on computational time and desired preci-
sion.

Fig. 3 illustrates this method and example results.
The X-channel is particularly sensitive to the axis dis-
tribution, with significant changes in both the yields and
angular distributions. In this case, two unique fit results
(sets of matrix elements Dα) were obtained via statisti-
cal sampling at a coarse level (11 temporal points over
the revival features), and fine-tuning via the bootstrap-
ping methodology outlined above (finally incorporating
89 temporal points), led to a single best-fit solution (6
complex-valued matrix elements, results as shown in Fig.
3(a)). For the A and B-channels the data becomes in-
creasingly noisy as the yields decrease, and also indicates
much less dramatic dependence on the axis distribution.
In these cases, adequate fits were obtained at the coarse
level (as indicated in fig. 3(b)), but further bootstrap-
ping was not explored in either case. For the A-channel,
three best fit parameter sets were obtained (7 matrix el-
ements), differing only in the perpendicular continuum
waves. For the B-channel data , a single best fit param-
eter set was obtained (5 matrix elements), although four
additional parameter sets were within 1% of the best fit
(defined by the minimal residual, χ2 [43]), and differed
in the parallel continuum. In these cases, additional data
and/or cross-checks on the determined matrix elements
are therefore desirable to confirm their validity. The full
set of fit results and matrix elements determined (includ-
ing the associated uncertainties) are given in the SM.

Finally, from the matrix elements obtained, the molec-
ular frame (MF) photoelectron interferograms may be
calculated, and compared with ab initio results. In this
case, the interferograms are no longer restricted by the
LF symmetry, hence this provides a sensitive test of the
retrieved matrix elements. Fig. 4 shows these results,
and comparison with ab initio results obtained using
ePolyScat [44, 45]. Results are shown for three different
polarization geometries in the MF. The parallel and per-
pendicular cases cleanly separate sets of matrix elements
Dα by symmetry, while the diagonal result mixes these
components and provides a particularly stringent test of
the results [13]. Compared to the LF, the MF results
show a wealth of structure. The experimentally recon-
structed and computed results for the X-channel are in
good agreement, while for the A channel the agreement
is variable, consistent with larger uncertainties in the re-
trieved matrix elements (see ref. [34] for full numerical
results). Photoionization of N2 has attracted much inter-
est due to the σ continuum shape resonance [46]. Signif-
icantly, the MF results (Fig. 4) for the X and B σ con-
tinua are similar to direct MF measurements in the same
photoelectron energy region presented in refs. [11, 47]
for 2 and 9 eV photoelectrons; while those studies inves-

tigated dissociative core ionization, the scattering and
shape-resonance behaviour of the σ continuum accessed
is analogous.

From the ab initio perspective, photoionization calcu-
lations present a formidable challenge and there are a
dearth of MF measurements for comparison and valida-
tion, due to the experimental difficulty of such measure-
ments; thus the MF results herein can alternatively be
viewed as an excellent test for theory [13, 46, 48–50].
From this perspective, consistency between the ab initio
and experimental reconstructions can be taken as a good
indicator that both methodologies are robust.
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Figure 3. Fitting of the the time-series data. Main panels
show the calculation results from Eqn. 2 for the X and A-
channel yields, β00(t), ‘x’ marks points included in the fit;
full βL,M (t) plots are presented in the SM. Examples of the
full angle-resolved interferograms S(θ, t), experimental results
inc. error bars and calculated, are also shown, and corre-
sponding axis distributions P (θ, t) (bottom).

In this work, time-domain measurements, utilizing
molecular alignment techniques, have been demonstrated
as a means to “complete” photoionization studies. The
time-domain data provided sufficiently high information
content to reliably extract the axis distributions and
matrix elements for three different ionization channels.
A bootstrapping fitting methodology provided a flexi-
ble and robust analysis route, and MF reconstructions
provided an additional stringent test of the physical pa-
rameters so determined, and an illustration of their pre-
dictive power. The main advantage of this methodol-
ogy is that it is completely general in principle (although
may be restricted by symmetry in certain cases, and may
require non-cylindrically symmetric polarization geome-
tries [34]), and applicable to any molecular ionization
problem, provided that the preparation and propaga-
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Figure 4. Molecular frame reconstruction as a function of ion-
izing orbital and polarization geometry. (Recon) MFPADs
reconstructed from the experimental analysis; (Calc.) deter-
mined from ab initio calculations. Each panel also shows the
ionizing orbital, and labels indicate the MF polarization ge-
ometry (photon projection q) and corresponding symmetries
for the ionization continua accessed.

tion of the rotational wavepacket remains decoupled from
other molecular dynamics. All relative magnitudes and
phases of the ionization matrix elements can be deter-
mined and MF interferograms can be obtained without
experimentally challenging MF measurements, which re-
quire molecular orientation or fragmentation. The disad-
vantage is that this fitting methodology is not a black-box
procedure, and requires detailed analysis (see SM). While
this methodology has been demonstrated herein for the
simplest case of a homonuclear linear molecule, the the-
ory and analysis protocol allows for arbitrary asymmetric
molecules. Eq. 3 can provide a sense of the limitations of
this. The degree of rotational excitation determines the
number of CL,MK,Q that can be extracted from the data.
These then provide a set of multivariate quadratic equa-
tions in the dipole matrix elements. The nature and sol-
ubility of this equation set for asymmetric top molecules
will be the subject of a future publication [51].Some im-
provements may be possible here, for example the use of
other fitting algorithms (genetic algorithms and homo-
topy methods [52]), which may allow for a more robust
approach less sensitive to local minima in the solution
hyperspace, and the use of GPUs to massively parallelise
the computations.

Experimentally, the use of an extended harmonic spec-
trum would allow for the observation and analysis of
many more photoelectron bands [27], thus providing a
route to obtaining even higher degrees of multiplex-
ing in the measurements, and MF reconstruction for

a range of channels and energies from a single time-
domain experimental dataset. In this light, the general-
ity of the method suggests such measurements, combined
with high-repetition rate laser sources, provide a route to
highly multiplexed “complete” experiments and MF re-
construction for a range of molecules, and a tractable
method for high-resolution dynamical MF imaging [53],
which is otherwise typically restricted by experimental
prerequisites and data-acquisition time-scales [54].
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