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Quantum Fourier transforms (QFT) have gained increased attention with the rise of quantum
walks, boson sampling, and quantum metrology. Here we present and demonstrate a general tech-
nique that simplifies the construction of QFT interferometers using both path and polarization
modes. On that basis, we first observed the generalized Hong-Ou-Mandel effect with up to four
photons. Furthermore, we directly exploited number-path entanglement generated in these QFT
interferometers and demonstrated optical phase supersensitivities deterministically.

Quantum interference lies at the heart of quantum me-
chanics. Increasing the number of single photons and
the complexity of optical circuits are key advances for a
quantum advantage in many photonic quantum process-
ing tasks [1]; including quantum computing [2], quantum
simulation [3], and quantum metrology [4].

The Hong-Ou-Mandel (HOM) effect [5] is regarded
as one of the quintessential quantum interference phe-
nomena. In the original experiment, two identical single
photons interfered and bunched in a two-mode quantum
Fourier transform (QFT) interferometer (i.e., a balanced
beam splitter). Generally, n identical single photons in-
terfering in an n-mode QFT interferometer [6] will lead
to a higher-dimensional bunching effect [7, 8], which is
expected to play an important role in understanding and
exploiting multiphoton interference. A recent applica-
tion of the QFT is to use it for stringent and efficient as-
sessment of boson sampling [9], which can guarantee the
results contain genuine quantum interference [10]. The
QFT interferometer has been constructed on chip with up
to eight modes [11]. However, only three-photon assess-
ment was demonstrated [12], due in part to the relatively
high loss of the optical circuit. For this scheme to work
with more photons, it is essential to construct large-scale
and low-loss QFT interferometers.

Quantum metrology is another important application
intimately related to quantum interference. One of the
most versatile quantum metrology devices—the Mach-
Zehnder interferometer (MZI), is made up of two bal-
anced beam splitters. Naturally, m-mode QFT interfer-
ometers were proposed to construct multimode MZIs for
precision improvement [13, 14] or simultaneous estima-
tion of multiple phases [15, 16]. Recently, Motes and
Olson et al. [17, 18] pointed out that an n-mode MZI fed
with a single photon into each arm can be used to beat

the shot noise limit (SNL) deterministically [see Fig. 1],
requiring neither nonlinear nor probabilistic preparation
of entanglement. However, since multimode MZIs con-
sist of a QFT and an inverse QFT interferometer, having
higher loss and lower stability than a single QFT interfer-
ometer, only one [13] and two [14] photons were tested
in a three-mode MZI so far. It remains a challenge to
observe multiphoton interference in multimode MZIs to
beat the SNL.

In this work, we develop a general approach to sim-
plifying the construction of QFT interferometers using
both path and polarization modes, which makes it possi-
ble to reduce resources as much as 75% when compared
to devices using only path modes. We report the first
experimental demonstration of the generalized HOM ef-
fect with up to four photons. Moreover, we constructed
multimode MZIs using two cascaded QFTs and observed
phase supersensitivies deterministically.

The single-photon inputs were generated via three
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FIG. 1. Quantum metrology scheme of the QFT interfer-
ometers using single-photon inputs. The QFT acts as the
number-path entanglement generator, while the inverse trans-
form QFT† is used for un-entangling the probe. Counting
coincidence events with one photon per output mode leads
to the probability distribution that is used to estimate the
unknown phase ϕ.
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FIG. 2. Experimental setup. (a) The single photon sources. Photons are produced in three nonlinear crystals (BBO) via
spontaneous parametric down conversion. Motorized translation stages ∆d1 – ∆d3 (not drawn in the figure) were used to
synchronize the delays among paths one to four. The quantum metrology optical circuit with (b) four, (c) two, and (d) three
single-photon inputs. The labels are: DM, dichroic mirror; PBS, polarizing beam splitter; PDBS, polarization-dependent beam
splitter; NBS, non-polarizing beam splitter; HWP (QWP), half (quarter) wave plate; Prism used as phase shifter between
different paths; IF, interferential filter; D1, D2, D3, D4, T1, T2, fiber-coupled single-photon detectors.

spontaneous parametric down conversion (SPDC)
sources [Fig. 2(a)], each emitting one pair of photons
|H〉s|V 〉i, where H and V denote horizontal and verti-
cal polarizations, and s and i correspond to the signal
and idler path modes, respectively. For n = 2, one pair
of SPDC photons was enough, while for n = 3, another
SPDC was added, and all three SPDCs were used for
n = 3. For the latter two cases, post selection of a
four-fold (six-fold) coincidence, consisting of one (two)
triggers, ensures that only three (four) photons enter the
setup in separate modes with a negligible higher-order
noise.

The QFT interferometers were constructed with low-
loss bulk-optical elements. In order to decrease the num-
ber of beam splitters and improve the interference stabil-
ity, we exploited polarization and path modes simultane-
ously. This simplification makes us able to construct the
QFT interferometers with only one non-polarizing beam
splitter (NBS) for n = 4 and 2 [Fig. 2(b), (c)], and one
polarization-dependent beam splitter (PDBS) for n = 3
[Fig. 2(d)]. More details can be found in the Supplemen-
tal Material [19].

Generalized HOM effect.— Going through the QFT
interferometers, the single-photon inputs will evolve as,

|11〉 → (|20〉 − |02〉)/
√

2, (1)

|111〉 →
√

2

3
(|300〉+ |030〉+ |003〉)− 1√

3
|111〉 , (2)

|1111〉 →
√

6

8
(|4000〉 − |0400〉+ |0040〉 − |0004〉)

+

√
2

4
(|1210〉 − |2101〉+ |1012〉 − |0121〉)

− 1

4
(|2020〉 − |0202〉). (3)

Other terms are destructively interfered to zero according
to the so-called zero-transmission law [7], which predicts
which output configurations will be strictly suppressed
in the generalized HOM effect. The theoretical and ex-
perimental probability distributions are shown in Fig. 3.
We use the fidelity defined as F =

∑
i

√
piqi to quantify

the similarity between the experimental probability dis-
tribution {pi} and the theoretical one {qi}, with respect
to the three states in Eqs. (1 – 3). We obtained fideli-
ties of 0.973 ± 0.001, 0.871 ± 0.004, and 0.765 ± 0.008
for n = 2, 3, and 4, respectively. To distinguish an ef-
fect associated with classical particles, we calculated the
experimental violation of Eqs. (1 – 3) as υn = Ns/Nt;
the ratio of the number of predicted suppressed events
Ns to the total number of events Nt. For n = 2, 3,
and 4, the violations with indistinguishable single pho-

tons are υind
2 = 0.052 ± 0.001, υind

3 = 0.24 ± 0.01,

υind
4 = 0.41 ± 0.03, compared with the larger values

υd
2 = 0.47±0.01, υd

3 = 0.68±0.08, υd
4 = 0.75±0.14 with

distinguishable single photons (coherent states). (See
more details in the Supplemental Material [19].)

The results can also be viewed as a nonclassicality wit-
ness of the input sources [8]. We calculated the aver-
age second-order correlation function, defined as Gn =

2
n(n−1)

∑
i<j ninjpij , where ni is the photon number in

the i-th mode and pij is the coincidence probability be-
tween the i-th and j-th modes. We obtained G2 =
0.052±0.005, G3 = 0.396±0.007 and G4 = 0.556±0.011,
significantly violating their corresponding classical lower
bounds (1 − 1/n), G2 = 0.5, G3 = 0.67, G4 = 0.75, and
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FIG. 3. Experimental results of the generalized HOM effect. (a) n = 2; (b) n = 3; (c) n = 4. These bunching output states
with photon number ≥ 2, such as (300) and (210), were measured by multiplexing the single-photon detectors with arrays of
beam splitters. Error bars are one standard deviation due to propagated Poissonian statistics.

indicating good average pairwise indistinguishability of
the input sources.

Quantum metrology based on the QFT.— Our scheme
has different phase distributions {fj ·ϕ}nj=1, as illustrated
in Fig. 1. To demonstrate the basic principle, we chose

two phase distributions (linear phase f lin
j = j − 1 and

delta phase fδj = δj,1) and implemented two- to four-
photon experiments. As shown in Fig. 4, all experi-
mental fringes exhibit phase superresolution and, most
importantly, oscillate with a better visibility than the
corresponding classically limited distributions, which are
given in the Supplemental Material [19]. Different from
other schemes based on engineered entangled states, e.g.,
the N00N state [20], the QFT-based quantum metrol-
ogy scheme directly exploits deterministically generated
entanglement [Eqs. (1 – 3)]. Thus, we do not need
to worry about post-selection efficiency when trying to
demonstrate phase supersensitivity [21].

The linear phase scheme has phase sensitivity that
scales as O(1/n3/2) [17]. Unfortunately, the high sen-
sitivity is due to the linearly increasing phase shift
{(j − 1)ϕ}nj=1, but not the quantum nature of multipho-
ton interference [22]. Nevertheless, the linear scheme is
superresolving and could have applications to quantum
microscopy [23]. Note that the largest relative phase shift
is (n− 1)ϕ ∼ nϕ. If we run a classical two-mode MZI n
times to measure the largest relative phase shift nϕ, its

TABLE I. Measuring phase sensitivity ∆ϕ against the num-
ber of photons n. Here HL denotes Heisenberg limit.

Photon-number (n) ∆ϕideal ∆ϕexp SNL HL
2 0.500 0.515 ± 0.013 0.707 0.500
3 0.433 0.491 ± 0.015 0.577 0.333
4 0.408 0.458 ± 0.027 0.500 0.250

classical sensitivity is ∆(nϕ) = O(1/n1/2), that means
∆(ϕ) = O(1/n3/2), giving the same improvement as the
linear phase scheme. In fact, it has been pointed out that
Kitaev’s phase-estimation algorithm, based on the QFT
with a similar linearly increasing phase shift, cannot beat
the SNL unless one uses adaptive measurements [24].

The delta function proved to be the best phase distri-
bution to demonstrate phase supersensitivity, although

∆ϕ only scales as
√

n
8(n−1) [18]. As the number of pho-

tons increases, the phase sensitivity approaches a con-
stant. As a result, the superresoluion disappears and the
output fringes approach the SNL distribution quickly.
Only in the low-photon-number regime (n ≤ 6), is it
possible to beat the SNL. In the experiment, the effec-
tive visibilities of the measured fringes are 0.94 ± 0.02
and 0.97 ± 0.03 for n = 3 and 4, respectively. They are
greater than the corresponding thresholds (0.83 and 0.93)
to beat the SNL. As shown in Table I, all the measuring
phase sensitivities beat the SNLs. More details can be



4

0 45 90 135 180
0

20k

40k

60k

80k

Phase shift (degrees)

C
o
u
n
ts

/1
s

0 45 90 135 180
0

50

100

150

200

Phase shift (degrees)

C
o
u
n
ts

/5
s

0 45 90 135 180

0

20

40

60

80

100

Phase shift (degrees)

C
o
u
n
ts

/1
h

0 45 90 135 180
0

50

100

150

200

Phase shift (degrees)

C
o
u
n
ts

/5
s

0 45 90 135 180
0

20

40

60

80

100

120

Phase shift (degrees)

C
o
u
n
ts

/1
h

FIG. 4. Measuring counts as function of phase shift ϕ for (a
– c) linear and (d, e) delta phase distribution. The fringes ex-
hibit 1, 1.5 and 2 distinct oscillations within a half phase cycle
for (a) n = 2, (b, d) n = 3 and (c, e) n = 4 respectively. Error
bars are one standard deviation due to propagated Poissonian
statistics. The solid red line is a fit to the case of indistinguish-
able single photons, while the dashed line is the limiting distri-
bution of distinguishable single photons. From (a) to (e), the
experimental (classical-limit) visibilities are 0.97±0.02 (0.50),
0.908 ± 0.020 (0.609), 0.962 ± 0.025 (0.790), 0.927 ± 0.037
(0.636), 0.919 ± 0.045 (0.829) respectively. Here visibility is
defined as (Countsmax−Countsmin)/(Countsmax+Countsmin),
different from the fitted parameter called effective visibility in
the main text and Supplemental Material [19].

found in the Supplemental Material [19].

In conclusion, we have experimentally demonstrated
the generalized HOM effect in QFT interferometers and
observed phase supersensitivies in the multimode MZIs
with two, three, and four photons. Our simple QFT de-
vices may be used to realize other QFT-based applica-
tions, such as quantum-enhanced multiphase estimation
[15, 16], entanglement generation and transformation
[25], sorting quantum systems efficiently [26], nonmono-
tonic quantum-to-classical transitions [27], and simula-
tions of geometric phase [28]. Additionally, the scheme
using both path and polarization modes are also suited to
optical waveguide systems for simplifying the construc-
tion of QFT interferometers.
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A. Smerzi, and F. Sciarrino, Sci. Rep. 6, 28881 (2016);
M. Szczykulska, T. Baumgratz, and A. Datta, Adv.
Phys.: X 1, 621 (2016).

[17] K. R. Motes, J. P. Olson, E. J. Rabeaux, J. P. Dowling,
S. J. Olson, and P. P. Rohde, Phys. Rev. Lett. 114,
170802 (2015).



5

[18] J. P. Olson, K. R. Motes, P. M. Birchall, N. M. Studer,
M. LaBorde, T. Moulder, P. P. Rohde, and J. P. Dowling,
Phys. Rev. A 96, 013810 (2017).

[19] See Supplemental Material, which includes Refs. [29–35].
[20] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.

Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733
(2000); J. P. Dowling, Contemp. Phys. 49, 125 (2008).

[21] K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist,
G. J. Pryde, J. L. O’Brien, and A. G. White, Phys. Rev.
Lett. 98, 223601 (2007); T. Nagata, R. Okamoto, J. L.
O’Brien, K. Sasaki, and S. Takeuchi, Science 316, 726
(2007).

[22] G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A 55,
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