
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Chiral Edge Mode in the Coupled Dynamics of Magnetic
Solitons in a Honeycomb Lattice

Se Kwon Kim and Yaroslav Tserkovnyak
Phys. Rev. Lett. 119, 077204 — Published 17 August 2017

DOI: 10.1103/PhysRevLett.119.077204

http://dx.doi.org/10.1103/PhysRevLett.119.077204


Chiral edge mode in the coupled dynamics of magnetic solitons in a honeycomb lattice

Se Kwon Kim and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

Motivated by a recent experimental demonstration of a chiral edge mode in an array of spinning
gyroscopes, we theoretically study the coupled gyration modes of topological magnetic solitons,
vortices and magnetic bubbles, arranged as a honeycomb lattice. The soliton lattice under suitable
conditions is shown to support a chiral edge mode like its mechanical analogue, the existence of
which can be understood by mapping the system to the Haldane model for an electronic system.
The direction of the chiral edge mode is associated with the topological charge of the constituent
solitons, which can be manipulated by an external field or by an electric-current pulse. The direction
can also be controlled by distorting the honeycomb lattice. Our results indicate that the lattices of
magnetic solitons can serve as reprogrammable topological metamaterials.

Introduction.—The term metamaterials refer to a class
of man-made composite materials which can offer func-
tionalities beyond those found in nature via collective
dynamics of constituent elements [1]. Inspired by the
robust edge states in the topological electronic phases
such as quantum Hall states [2], topological metameteri-
als with analogous edge states have been proposed and
realized in optical [3], acoustic [1], magnetic [4], and me-
chanical systems [5]. In particular, it has recently been
shown theoretically [6] and experimentally [7] that a hon-
eycomb lattice of spinning gyroscopes can support a chi-
ral edge mode that is protected from small perturbations
such as lattice distortions and thus can be identified as
a topological mechanical metamaterial. As discussed in
Ref. [7], an open challenge for its practical applications
is to find a feasible way to keep gyroscopes spinning.

Quantum-mechanically, nature has already endowed us
a permanent gyroscope: spin of a particle. This intrin-
sic angular momentum manifests itself macroscopically
through the gyrotropic force in the dynamics of mag-
netic solitons with topologically nontrivial textures such
as magnetic bubbles (also known as skyrmions) and vor-
tices [8]. These solitons and their dynamics have at-
tracted much attention of physicists due to their funda-
mental properties [9] and technological promise [10, 11].
In particular, the collective gyration modes of arrays of
vortex disks have been studied theoretically [12] and ex-
perimentally [13–16] as reprogrammable metamaterials
whose functionalities can be controlled by changing vor-
tices’ polarities and chiralities [17].

When viewing topological magnetic solitons as gyro-
scopes, it is natural to expect that a honeycomb lattice
of the solitons can support a chiral edge mode as its me-
chanical analogues [6, 7]. In this Letter, we verify the
expectation both by numerically solving the equations of
motion for the dynamics of coupled solitons and by map-
ping the system to the Haldane model for an electron in
graphene, which is known to exhibit the quantum Hall
effect [18]. We also show that the direction of the edge
mode can be controlled either by changing the topolog-
ical charge of the solitons or by distorting the geometry
of the honeycomb lattice. We conclude the Letter with
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FIG. 1. Schematic illustrations of (a) a vortex with the topo-
logical charge Q = 1/2, (b) a vortex with Q = −1/2, (c) a
magnetic bubble with Q = 1, and (d) a magnetic bubble with
Q = −1.

an experimental outlook, including a possibility of the
thermal chirality control using ferrimagnets [19].
Model.—We consider a two-dimensional array of mag-

netic solitons such as vortices and magnetic bubbles,
which are characterized by their topological charges,

Q ≡ 1

4π

∫
dxdy n · (∂xn× ∂yn) , (1)

which measures how many times the unit vector n along
the direction of the local magnetization wraps the unit
sphere. The elementary topological charges of vortices
and magnetic bubbles are Q = ±1/2 and Q = ±1, re-
spectively, the sign of which is determined by the internal
structure. See Fig. 1 for schematic illustrations of them.
The slow motion of the solitons can be described by their
positions, Rj ≡ (Xj , Yj), which are assumed to be sub-
jected to the restoring force toward equilibrium positions,
R0
j ≡ (X0

j , Y
0
j ). The low-energy dynamics of the coupled

solitons can be described by Thiele’s equation [8] within
the approximation of the rigid soliton texture:

Gẑ× U̇j − αDU̇j + Fj = 0 , (2)

where Uj ≡ Rj − R0
j is the displacement of the soli-

ton from the equilibrium position, G ≡ −4πstQ is the
gyrotropic coefficient, s ≡ Ms/γ is the spin density of
the magnet, Ms is the saturation magnetization, γ is
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FIG. 2. (a) A schematic illustration of physically separated
ferromagnetic disks (drawn as circles) in a honeycomb lattice
with zigzag edges; vortices in disks have the polarity p = 1 and
thus the topological charge Q = 1/2. The gray lines between
circles represent the magnetostatic interactions between vor-
tices. The arrows along the edges represent the directions of
the chiral mode. (b) The one-dimensional dispersion for the
coupled gyration modes of the system shown in (a), which is
obtained by solving Eq. (4) numerically. The symbol a repre-
sents the distance between the second-nearest neighbors. The
color represents the average vertical position 〈y〉 weighted by
the amplitude squared corresponding to each mode. (c), (d)
Analogous figures for vortices with the polarity p = −1, cor-
responding to the topological charge Q = −1/2.

the gyromagnetic ratio, t is the thickness of the mag-
net, αD ≡ αcst is the viscous coefficient, c is a dimen-
sionless geometric factor determined by the exact profile
of the solitons, α is the Gilbert damping constant [20],
and Fj ≡ −∂U/∂Uj with U the potential energy as a
function of the displacements. Here, the first term is the
gyrotropic force proportional the spin density, which is
crucial for the analogy between the lattice of magnetic
solitons and the lattice of mechanical gyroscopes; the
second term is the viscous force; the third term is the
conservative force.

To the quadratic order in the displacements, the en-
ergy of the system is modeled by U =

∑
j KU2

j/2 +∑
j 6=k Ujk/2, where the first term is the pinning poten-

tial parametrized by the spring constant K > 0 and the
second term is the interaction between two solitons. The
following form is considered for the interactions:

Ujk = I‖(djk)U
‖
j U
‖
k − I⊥(djk)U⊥j U

⊥
k . (3)

Here, djk ≡ |R0
j −R0

k| is the distance between two soli-

tons in the absence of the interaction; u
‖
j ≡ êjk · Uj

is the projection of the displacement Uj onto the line
connecting two solitons, described by the unit vector
êjk ≡ (R0

k − R0
j )/djk; U⊥j ≡ (ẑ × êjk) · Uj is the pro-

jection of Uj onto the line perpendicular to êjk; I‖(djk)
and I⊥(djk) parametrize the corresponding interactions,
which are attractive (repulsive) if the value is positive
(negative). We will simplify the subsequent discussion by
assuming that the interactions are much weaker than the
pinning potential, |I‖|, |I⊥| � K. The interaction of this
form can capture the magnetostatic interactions between
two vortices in separated disks [12] and the exchange-
mediated interactions between two magnetic bubbles, as
will be explained further below. Thiele’s equation (2)
with the inter-vortex interactions in Eq. (3) has been
employed successfully to describe the observed dynamics
of an array of vortex disks [13, 14].

We are interested in the dispersion of the normal modes
of the coupled gyration dynamics of solitons. Since the
main effects of the viscous force with the small Gilbert
damping α � 1 is the broadening of the dispersion
linewidth, not the change of the dispersion itself, we will
neglect it henceforth. In addition, we will take account
of the interactions between nearest neighbors alone by
assuming that the interactions decay sufficiently fast as
a function of the distance, which will be justified below
individually for each physical realization. Then, with
the energy given above, Thiele’s equations of motion for
Uj ≡ (uj , vj) [Eq. (2)] can be written as the following
coupled equations for uj and vj :

0 = sgn(Q)

(
v̇j
−u̇j

)
− ω0

(
uj
vj

)
−
∑
k∈〈j〉

(
ζ + ξ cos 2θjk ξ sin 2θjk
ξ sin 2θjk ζ − ξ cos 2θjk

)(
uk
vk

)
,

(4)

where ω0 ≡ K/|G| is the gyration frequency of an isolated
soliton, 〈j〉 represents the set of the nearest neighbors of
the soliton j, θjk is the angle of the direction êjk from
the x axis, ζ ≡ (I‖−I⊥)/|G|, and ξ ≡ (I‖+I⊥)/|G|. The
assumption that the interaction is much weaker than the
pinning potential translates into ζ, ξ � ω0.
Vortex honeycomb lattice.—A ferromagnetic disk of a

suitable size can harbor a magnetic vortex in its ground
state [21]. A vortex is characterized by the polarity
p = ±1, which is the direction of the magnetization at
its core, and the chirality, c = ±1, which describes the
clockwise (c = −1) or counterclockwise (c = 1) in-plane
curling of the magnetization around the core. The po-
larity of a vortex is related to its topological charge by
Q = p/2. The polarization and the chirality can be inde-
pendently controlled by an external field or an electric-
current pulse [17]. Throughout the Letter, we use vor-
tices with the positive chirality c = 1, which are shown
in Figs. 1(a) and (b).

Let us consider vortices in physically separated disks
that are arranged as a honeycomb lattice. See Fig. 2
for illustrations. The displacements of vortices from
the centers of disks generate the magnetostatic charges
by altering the magnetization profile from the ground
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state [22]. The magnetostatic energy associated with
these charges engender the inter-vortex interaction given
by Eq. (3) [12]. The magnitudes of the interactions de-
cay as I‖(d), I⊥(d) ∼ d−6, which justifies our nearest-
neighbor model in Eq. (4). Let us take the experimental
values for the parameters from Ref. [14] to obtain the
normal-mode dispersion from Eq. (4). For two permalloy
disks of the radius R = 500nm, the thickness t = 50nm,
and the center-to-center distance d = 1075nm, the pa-
rameters are given by K ∼ 5 × 10−4J/m2, ω0 ∼ 2 GHz,
I‖ ∼ 5×10−5J/m2, and I⊥ ∼ 3×10−5J/m2. These mea-
sured values agree with the theoretical estimations [12].
The corresponding parameters in our model [Eq. (4)] are
given by ζ ∼ 0.05ω0 and ξ ∼ 0.15ω0.

We solve Eq. (4) for a honeycomb ribbon with peri-
odic boundary conditions along the x direction and with
zigzag terminations at the top y = L and the bottom
y = 0. The color represents the average vertical position
of the mode, 〈y〉 ≡ ∑

j Y
0
j |Uj |2/

∑
j |Uj |2. The one-

dimensional dispersions for the normal modes are shown
in Fig. 2(b) and (d) for vortices with the polarity p = 1
and p = −1, respectively. The results show that each sys-
tem supports the chiral edge mode lying within the bulk
gap, which rotates the boundary in the same direction
as individual solitons precess. Two polarities, p = 1 and
p = −1, are related by the magnetization flip and thus
by the time reversal. The chiralities of the edge modes
are opposite accordingly.

Mapping to the Haldane model.—The existence of the
chiral edge mode can be understood analytically by map-
ping Eq. (4) to the Haldane model of the quantum Hall
effect [18]. The analogous mapping is given in Ref. [7]
for mechanical gyroscopes, which we adopt here for mag-
netic solitons. For simplicity, we will consider the case
of the negative topological charge, Q = −1/2. We be-
gin by casting Eq. (4) in terms of the complex variable,
ψj ≡ uj + ivj :

iψ̇j = ω0ψj +
∑
k∈〈j〉

(ζψk + ξe2iθjkψ∗k) . (5)

The equation can be interpreted as the Schrödinger equa-
tion for the wavefunction of an electron in a tight-binding
model. Since the interactions are much weaker than the
pinning potential, ζ, ξ � ω0, we can use perturbation
theory to find the equation in terms of ψj alone by elim-
inating its complex conjugate. To that end, let us ex-
pand the complex variable as ψj(t) = χj(t) exp(−iω0t) +
φj(t) exp(iω0t) where χj(t) and φj(t) change over time
slowly on the time scale set by the frequency ω0. Then,
by matching the coefficients of exp(iω0t) and exp(−iω0t)
in Eq. (4), we obtain iχ̇j =

∑
k∈〈j〉(ζχk + ξe2iθjkφ∗k)

and iφ̇j = 2ω0φj +
∑
k∈〈j〉(ζφk + ξe2iθjkχ∗k). Since the

interactions are weak, ζ, ξ � ω0, the soliton dynam-
ics is mostly associated with the resonance frequency
ω0 and thus |χj | � |φj |. Using the approximation

2ω0φj ≈ −
∑
k∈〈j〉 ξe

2iθjkχ∗k obtained from the latter
yields the following equation:

iψ̇j =
(
ω0 − 3ξ2/2ω0

)
ψj + ζ

∑
k∈〈j〉

ψk

− (ξ2/2ω0)
∑
l∈〈〈j〉〉

cos
(
2θ̄jl

)
ψl

− i(ξ2/2ω0)
∑
l∈〈〈j〉〉

sin
(
2θ̄jl

)
ψl ,

(6)

where 〈〈j〉〉 is the set of the second-nearest neighbors of
j, θ̄jl ≡ θjk−θkl is the relative angle from the bond k → l
to the bond j → k with k between j and l. This equation
is similar to the Haldane model for an electron in a hon-
eycomb lattice [18, 23], which is a prototypical example
exhibiting the quantum Hall effect. The difference is the
term in the second line, which is real and does not affect
the existence of the chiral edge mode [7].

Let us explain how the chiral edge mode originates in
the above equation for electrons. The angle between the
neighboring bonds is given by θ̄jl = ±2π/3, where the up-
per (lower) sign is for the case when we have to turn right
(left) to go from j to l. When the last term vanishes, two
electronic bands associated with two sublattices touch
each other at two points in the momentum space, form-
ing two Dirac cones. When the last term is finite, an
electron picks up a phase when hopping to its second-
nearest neighbors and the sign of the accumulated phase
depends on whether the electron makes a left or right
turn to arrive at its neighbors. Via this path-dependent
phase, the imaginary second-nearest hopping opens topo-
logical gaps at the Dirac cones and engenders the chiral
edge mode. The gap size is given by ∆ = 9ξ2/2ω0 [23].

Magnetic bubble honeycomb lattice.—Now let us turn
to a honeycomb soliton lattice, in which only the nearest-
neighbor solitons connected by bonds are engineered
to interact. We consider distortions of the constituent
hexagons, which preserve the lattice connectivity and the
bond lengths corresponding to the original nearest neigh-
bors. From the above discussions, the origin of the chiral
edge mode is the staggered phase gathered by an elec-
tron hopping between the second-nearest neighbors [18].
As can be seen in Eq. (6), the sign of the phase can be
controlled by changing the angle θ̄jl between the neigh-
boring bonds. Let us take examples shown in Fig. 3.
In Fig. 3(a), sin 2θ̄jl is positive (negative) if we make a
right (left) turn to go from j to l; In Fig. 3(c), sin 2θ̄jl
vanishes; In Fig. 3(e), the sign of sin 2θ̄jl is opposite to
the case in Fig. 3(a) for all pairs of j and k. Since the
staggered phase changes its sign between (a) and (c) with
vanishing in (b), we expect the change of the chirality of
the topological edge mode from (a) to (c) via the gap
closing in (b) [7]. We verify this expected dependence of
the chirality on the shape of the constituent hexagons by
numerically solving Eq. (4) below by taking the approach
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FIG. 3. (a) A schematic illustration of magnetic bubbles with
the topological charge Q = 1 (drawn as circles) in a hon-
eycomb lattice with zigzag edges. The black lines between
circles represent the exchange-coupled interactions between
magnetic bubbles connected by the magnetic strips. (b) The
one-dimensional dispersion for the coupled gyration modes for
the system shown in (a). (c), (d) Analogous figures when the
angles between nearest bonds are multiples of π/2, for which
the dispersion for the bulk is gapless and thus the topological
edge mode is not supported. (e), (f) Analogous figures for
the system exhibiting the chiral edge mode in the opposite
direction to (a) and (b).

used in Ref. [7], which has studied the analogous problem
for gyroscope lattices.

Let us consider a honeycomb lattice of magnetic bub-
bles with the topological charge Q = 1, which can appear
as a ground state of a magnetic disk with perpendicular
anisotropy [24]. The constituent disks are connected by
ferromagnetic strips so that neighboring magnetic bub-
bles can interact with each other via the exchange en-
ergy. The coupled gyration modes of magnetic bub-
bles in one-dimensional magnetic strip have been stud-
ied by micromagnetic simulations in Ref. [25], accord-
ing to which the dominant contributions to the inter-
action comes from the exchange energy. We model the
exchange-driven (repulsive) interaction as a function of
the distance, f(Rj ,Rk) = f(|Rj − Rk|) by following
Refs. [26]. To the second order in the displacements, the
interaction can be written in the form of Eq. (3) with
I‖ = −f ′′ and I⊥ = f ′/djk. Since the parameters for

the magnetic bubble interactions are not known unlike
the well-studied vortex interactions, we adopt the pa-
rameters for vortices: ζ = −0.05ω0 and ξ = −0.15ω0, in
which the minus sign represent the repulsive interactions.

Equation (4) is solved for three hexagonal lattices com-
posed of distorted hexagons. Fig. 3(b) shows the one-
dimensional dispersion for the coupled magnetic bub-
ble gyration when the angles are θjk = π/4, 7π/4, 3π/2
for the sublattice sites j at Y-shaped junctions. This
case is similar to the vortex honeycomb lattice composed
of regular hexagons, and thus exhibits the chiral edge
mode rotating the boundary counterclockwise, same as
the precession of individual magnetic bubbles. Fig. 3(d)
shows the normal-mode dispersion when the angles are
θjk = 0, π, 3π/2 for the same sublattice sites j. In this
case, the last term in Eq. (6) vanishes and thus the bulk
band is gapless; the topological edge mode does not ex-
ist. Fig. 3(f) shows the dispersion when the angles are
θjk = −π/4, 7π/4, 3π/2 for the aforementioned sublat-
tice. In this case, the sign of the last term changes from
the case of (a) and thereby exhibits the chiral edge mode
rotating the boundary clockwise, opposite to the local
precession of the constituent magnetic bubbles.

Discussion.—We have shown that a honeycomb lattice
of magnetic vortices and bubbles can exhibit a chiral edge
mode via their coupled gyrations, the direction of which
can be controlled by flipping the topological charge or by
distorting the lattice geometry. The dispersions of the
coupled vortex gyration have been investigated experi-
mentally in several different arrangements including one-
dimensional arrays of 5 disks [15] and two-dimensional
arrays of 50×50 disks [16] by scanning transmission x-ray
microscopy, which leads us to believe that experimental
realization of our proposal for a vortex honeycomb lat-
tice is within the current experimental reach. The exper-
imental exploration of the chiral edge mode in a magnetic
bubble lattice seems to be more challenging, as reflected
in the relative lack of an experimental study on the dy-
namics of engineered magnetic bubble lattices.

We would like to mention that there is a class of ferri-
magnets which allows us to thermally control the chiral-
ity of the edges modes. These are rare-earth transition-
metal alloys such as GdFeCo and CoTb, possessing the
special temperature referred to as the angular momen-
tum compensation point, across which the gyromagnetic
ratio changes its sign while keeping the magnetization
finite [19]. By changing the sign of the gyromagnetic
ratio, we can flip the sign of the gyrotropic force in
Eq. (2) [27]. Therefore, when disks harboring vortices are
made of such ferrimagnets, we should be able to change
the chirality of the edge mode by varying the temperature
across the compensation point, providing an example of
temperature-driven topological phase transitions.

This work was supported by the Army Research Office
under Contract No. W911NF-14-1-0016.
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