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We provide a systematic comparison of the many-body localization transition in spin chains with
nonrandom quasiperiodic vs. random fields. We find evidence suggesting that these belong to two
separate universality classes: the first dominated by “intrinsic” intra-sample randomness, and the
second dominated by external inter -sample quenched randomness. We show that the effects of
inter-sample quenched randomness are strongly growing, but not yet dominant, at the system sizes
probed by exact-diagonalization studies on random models. Thus, the observed finite-size critical
scaling collapses in such studies appear to be in a preasymptotic regime near the nonrandom univer-
sality class, but showing signs of the initial crossover towards the external-randomness-dominated
universality class. Our results provide an explanation for why exact-diagonalization studies on ran-
dom models both see an apparent scaling near the transition while also obtaining finite-size scaling
exponents that strongly violate Harris/Chayes bounds that apply to disorder-driven transitions. We
also show that the MBL phase is more stable for the quasiperiodic model as compared to the random
one, and the transition in the quasiperiodic model suffers less from certain finite-size effects.

Many-body localization (MBL) generalizes the phe-
nomenon of Anderson localization to the interacting set-
ting [1–6]. The dynamics in an MBL system fails to es-
tablish local thermal equilibrium, and even highly ex-
cited states can retain local memory of their initial con-
ditions for arbitrarily late times. The transition between
an MBL phase and a “thermalizing” one is not a ther-
modynamic phase transition and lies outside the frame-
work of equilibrium statistical mechanics. Instead it is a
novel eigenstate phase transition [7, 8] across which ther-
mal and “volume-law” entangled many-body eigenstates
obeying the eigenstate thermalization hypothesis (ETH)
[9–11] change in a singular way to non-thermal and area-
law entangled eigenstates in the MBL phase.

Although the MBL transition has attracted much re-
cent interest [12–29], very little is definitively known
about its properties. Phenomenological renormalization
group (RG) treatments of the transition are approximate
but can probe large system sizes, and such studies [26–
29] find a continuous transition in one dimension with a
finite-size critical scaling exponent νFS ∼ 3 satisfying rig-
orous Harris/CCFS/CLO scaling bounds [30–32] which
require νFS ≥ 2/d for transitions in d dimensions in the
presence of quenched randomness. On the other hand,
most other studies of the transition use numerical exact
diagonalization (ED) of spin-chains which is limited to
system sizes L ≤ 22. These ED studies observe an ap-
parent scaling collapse near the transition, but with scal-
ing exponents νFS ∼ 1 violating the CCFS/CLO bound
[12, 13]. Strikingly, some aspects of this transition even
look first-order-like in that quantities like the eigenstate
entanglement entropy (EE) of small subsystems can vary
discontinuously across the transition [25, 29].

A sensitive probe of the MBL transition is the stan-
dard deviation of the half-chain EE, ∆S , which peaks at
the transition as the eigenstates change from area law to
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FIG. 1. Schematic RG flow for a one dimensional sys-
tem displaying an MBL transition. In the absence of ex-
ternal randomness, the critical fixed point is dominated by
“intrinsic” intra-sample variations and is not constrained by
Harris/Chayes bounds (pink star). The addition of external
quenched randomness is a Harris-relevant perturbation which
causes the nonrandom fixed point to flow towards an “infi-
nite randomness” disorder dominated fixed point (blue star).
The “detuning” parameter quantifies the ratio of off-diagonal
to diagonal couplings in the most local basis for the coarse
grained model. The MBL phase is more stable in the nonran-
dom model and thus the critical flow is towards higher detun-
ing. We propose that the effects of external randomness are
not yet fully apparent at the sizes probed by ED studies, and
the transition in these systems is mostly still governed by the
nonrandom fixed point while beginning to crossover towards
the random fixed point (shaded oval).

volume law entangled [12]. A careful parsing of ∆S across
inter- and intra- sample contributions near the transition
reveals two notable features [25]: (i) a sizeable volume-
law scaling for ∆S across eigenstates of the same sample,
a property that none of the RG treatments capture and,
(ii) a super-linear growth with L for the sample-to-sample
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contribution to ∆S at the system sizes studied by ED, a
trend that is unsustainable in the large L limit since the
maximum possible EE scales as a volume law. This pars-
ing indicates that the observed violations of CCFS/CLO
bounds (which are derived from sample-to-sample vari-
ations) might result from a scenario in which the effect
of quenched randomness across samples is not yet fully
manifest, but growing strongly, at the sizes probed by
ED [25]. These data also suggest an intriguing scenario
in which there might be two universality classes for tran-
sitions between MBL and thermal phases: one dominated
by “intrinsic” eigenstate randomness within a given sam-
ple, and the second dominated by external quenched ran-
domness across samples. In this scenario, the observed
critical finite-size scaling collapses would appear to be in
a preasymptotic regime near the first universality class
(for which CCFS/CLO bounds do not apply), but show-
ing the signs of the initial crossover towards the second
external-randomness dominated universality class.

In this letter, we provide a more systematic analysis
of the scenario above by studying the MBL transition in
a quasiperiodic (QP) model with no quenched random-
ness. Following the work of Aubry and André [33], the
localization transition in non-interacting quasiperiodic
models has been extensively studied. More recently, it
was shown that interacting quasiperiodic models have an
MBL phase [34], and signatures of this phase have been
observed in cold-atomic experiments [35, 36]. However,
compared to its non-interacting counterpart, the MBL
transition in quasiperiodic models has received little the-
oretical attention. Nor have the points of similarity and
difference between the MBL transition in quasiperiodic
and random models been systematically studied. In this
work, we provide a detailed finite-size scaling analysis of
the QP-MBL transition, along with a comparison to the
random MBL transition. We find that the MBL phase is
more stable for the quasiperiodic model than for the ran-
dom one, which is opposite to the trend for single-particle
localization. This we attribute to the effects of locally
thermal rare regions that destabilize MBL in the random
system. The finite-size scaling we find suggests that there
is a nonrandom universality class of the transition, and
both models are governed by this universality class for the
sizes accessible to ED. However, the random model is be-
ginning to cross over towards the external-randomness-
dominated universality class. Adding randomness to the
quasiperiodic model is thus a “Harris-relevant” pertur-
bation, causing this crossover. Fig 1 shows a schematic
RG flow for this scenario. Altogether, our work not only
advances our understanding of the global structure of
quantum criticality in MBL systems, but also provides a
concrete explanation for why numerical studies on ran-
dom models see finite-size scaling collapse but obtain ex-
ponents violating Harris/Chayes bounds.

Model: We consider quasiperiodic/random spin chains

of the form
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L−1∑
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where S
{x/y/z}
i are spin 1/2 degrees of freedom on site

i, J = J ′ = Jz = 1, and k =
√
5−1
2 is an irrational

wavenumber. For the quasiperiodic model, φQPi = φ ∈
[−π, π) is an arbitrary global phase offset such that the
on-site fields are periodic with a period that is incom-
mensurate with the lattice. This choice with J ′ = Jz = 0
is the non-interacting Aubry-André model which is local-
ized for W > 1 [33]. For comparison, we will also study a
random model in which the phase is chosen randomly and
independently on each site, φRi =∈ [−π, π). We choose
this form for the random fields instead of the more con-
ventional uniform distribution [3, 13] to keep the distri-
bution of the on-site fields constant between the random
and QP models, which enables a more direct comparison
between the two. Both models are many-body localized

for large field amplitudes W > W
QP/R
c . We add the

next-nearest neighbor terms with strength J ′ to break
the integrability of the models in the limit W → 0, which
allows the system to thermalize more completely within
the thermal phase even for relatively small system sizes.

Fig. 2 benchmarks the location of the MBL tran-
sition(s) in (1) using the half-chain entanglement en-
tropy, S, and the level statistics ratio, r. Fig. 2(a)/(b)
shows S divided by ST = 0.5(L log(2)− 1), which is the
Page [37] value for a random pure state, in the quasiperi-
odic/random models respectively. The data is averaged
over 1000 − 105 disorder samples depending on L (in
the quasiperiodic model, the averaging is over different
choices for the global phase shift φQP ), and over the mid-
dle quarter of the eigenstates in the Sztot = 0 sector for
each sample (for L = 16, 18 we average over the middle
200 eigenstates). In both models, S/ST as a function of
W approaches a step function with increasing L, going
from zero in the MBL phases with area-law entanglement
to one in the thermal phase.

Fig. 2(c)/(d) shows the level statistics ratio [4] r ≡
min{∆n,∆n+1}/max{∆n,∆n+1}, where ∆n = En −
En+1 is the spacing between eigenenergy levels, in the
quasiperiodic/random models respectively. This ratio
approaches the GOE (Gaussian Orthogonal Ensemble)
value r ∼= 0.53 in the thermal phase and the Poisson
value r ∼= 0.39 in the localized phase for both models.

A few points of note. First, the location of the crossing
in the entropy/level statistics data drifts towards larger
W with increasing L in both models, as is typical of
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FIG. 2. (a), (b): Average half-chain eigenstate EE divided
by the Page value ST for the quasiperiodic (a) and random
(b) models. S/ST approaches a step function at the transi-
tion, going from zero in the MBL phase to one in the thermal
phase. Insets show that the location of the crossings drift
towards larger W with increasing system size, but the finite-
size drift is stronger in the random model. (c), (d): Level
statistics ratio r̄ which obeys GOE/Poisson distributions in
the thermal/localized phases respectively in the quasiperiodic
(c) and random (d) models. Both diagnostics show that the
MBL phase in the quasiperiodic model is stable down to a
lower value of W as compared to the random one.

all ED studies. However, the drifting of the crossing is
stronger in the random model as compared to the QP
one, suggesting that the QP model suffers less from this
finite-size effect so the behavior we are seeing may be
closer to the true asymptotic large-L regime. Second,
as a related point, the transition is sharper (narrower in
width) in the QP model. Third, despite the functional
similarities in the choice of potentials between the two
models, WQP

c < WR
c , where we estimate WQP

c & 4.25
and WR

c & 5.5 (these are estimated as lower bounds
since, as always, there is no observed crossover on the
MBL side of the transition [25]). This means that the
QP model remains localized down to a smaller value of
W , which is most likely due to the absence of rare Grif-
fiths events which can disrupt localization in the random
model. Indeed, within the MBL phase, the mean entan-
glement is larger in the random model than in the QP
one (for comparable W/Wc), and distributions of the EE
in the random model have longer tails to large entangle-
ment reflecting rare events (see Supplement)

Variance of the half-chain entanglement entropy:
We now study the standard deviation of the half-chain
entanglement entropy ∆S which peaks at the MBL tran-
sition, while it tends to zero deep in the MBL/ETH
phases [12]. Following the prescription in Ref. 25,
we parse the contributions to ∆S due to fluctuations
from sample-to-sample (∆samples

S ) from eigenstate-to-
eigenstate within a given sample (∆states

S ) and from differ-
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FIG. 3. Standard deviation of the half-chain EE ∆S di-
vided by the Page value ST , parsed by its contributions from
eigenstate-to-eigenstate (solid, circles), cut-to-cut (dashed,
stars), and sample-to-sample (dotted, triangles) variations in
the quasiperiodic (a,c) and random (b,d) models. The intra-
sample variations look qualitatively similar between the two
models (a,b) suggesting that these are mostly governed by the
same fixed point at these sizes. However, the inter-sample
variations are growing strongly with L in the random model
as it begins to crossover towards its asymptotic disorder dom-
inated fixed point (d), while they are subdominant with no
systematic L dependence in the quasiperiodic model (c).

ent entanglement cuts within a given eigenstate (∆cuts
S );

see Fig 3. We use all cuts that produce a contiguous sub-
system of length L/2. Since S/ST lies between 0 and 1,
∆S/ST can be at most 0.5.

First, note that the peak value of ∆states
S /ST is in-

dependent of L in both the QP (Fig. 3a) and ran-
dom (Fig. 3b) models indicating a volume law scaling,
∆states
S ∼ L, in both and thus a substantial variance in S

across eigenstates of the same sample. This property has
not been included by any of the phenomenological RG
approaches to the transition, and it indicates that the
network of resonances driving the transition varies sub-
stantially across eigenstates of a given sample. Also note
that the peak value of ∆cuts

S /ST decreases with increas-
ing L (Figs. 3a, 3b), indicating subvolume law scaling for
∆cuts
S in both models. This subvolume law scaling limits

the spatial inhomogeneity of the resonant network of en-
tanglement at the transition [25]. Together, these data
indicate that the intra-sample critical variations across
eigenstates and entanglement cuts look qualitatively sim-
ilar between the random and QP models. In RG terms,
this suggests that, for these sizes, the intra-sample finite-
size critical behavior of the two models are perhaps gov-
erned mostly by the same fixed point (c.f. Fig. 1).

On the other hand, the two models look strikingly dif-
ferent when considering inter -sample variations. In the
quasiperiodic model, ∆samples

S is far sub-dominant to the
intra-sample contributions and is not growing systemat-
ically with L (Fig. 3c). This indicates that the different
quasiperiodic samples are quantitatively similar in their
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FIG. 4. Finite-size critical scaling collapse for S (a,b), and
∆states

S (c, d) data in the quasiperiodic and random models.
We see that ν ∼ 1 for both models, again suggesting that
the transition in both models is mostly governed by the same
nonrandom fixed point at these sizes. This exponent is in
violation of CCFS/CLO bounds which must asymptotically
constrain the random model - note that ν is slightly larger
for the random model consistent with the suggestion that the
effects of quenched randomness are growing but not yet fully
apparent at these sizes. The critical Wc is larger in the ran-
dom model.

entanglement properties, and sample-to-sample fluctua-
tions are not the dominant source of the finite-size critical
rounding in the quasiperiodic model at these sizes.

By contrast, in the random model, the peak value of
∆samples
S /ST grows strongly with L which naively indi-

cates that ∆samples
S scales super-linearly with L (Fig. 3d),

a trend that is not sustainable in the asymptotic large
L limit. This indicates that effects of inter-sample
quenched randomness are not yet fully manifest but
growing strongly at these small sizes. In RG terms, we
interpret this as an indication of an RG flow, due to the
external randomness, that is away from the fixed point
that governs the nonrandom quasiperiodic model and is
towards the infinite-randomness Harris/Chayes obeying
fixed point that will asymptotically govern the transition
for this random model (c.f. Fig. 1).
Two universality classes: We now turn to the finite-
size critical scaling properties of the MBL transition in
the two models. Figure 4 shows scaling collapse for S/ST
and ∆states

S /ST , where both quantities are fit to a form
g[(W −Wc)L

1/ν ], where Wc denotes the critical disorder
strength and ν is the finite-size scaling exponent.

We see a scaling collapse in the quasiperiodic model
with Wc ∼ 4.25 and ν ∼ 1 (Fig 4 a,c). First, note
that quasiperiodic models without quenched randomness
are not subject to the CCFS/CLO bound which require
ν ≥ 2/d. Instead, such models fall under the purview of
the Harris-Luck criterion [38] which imposes the weaker
bound ν ≥ 1/d [39]. The observed scaling exponents
are certainly already quite close to obeying this bound,
considering the small sizes studied. This, combined with

our observations of finite-size drifts in the discussion sur-
rounding Fig 2, suggests that the critical behavior in
the quasiperiodic model might be close to its asymptotic
large-L form even at these sizes. If the scaling expo-
nent continues to be ν ∼ 1 even in the asymptotic limit,
then it is clear that the MBL transition in quasiperiodic
models belongs to a different universality class from the
transition in models with quenched randomness which
must obey the CCFS/CLO bound—this would make the
external randomness Harris-relevant when added to the
quasiperiodic model (c.f. Fig 1).

It is an interesting curiosity that the non-interacting
Aubry-Andre transition also has ν = 1, so one might
be tempted to believe that the critical properties of the
interacting quasiperiodic transition belong to the same
universality class as the non-interacting one. However, a
careful analysis (not shown) reveals that properties like
the volume law scaling of ∆states

S across the many-body
eigenstates are absent in the non-interacting model.

Turning to the random model, we see a scaling col-
lapse with a larger critical disorder strength Wc ∼ 5.5
(Fig 4 b,d) which is consistent with the presence of rare
Griffiths effects in the random model which can aid with
thermalization. The scaling exponent ν ∼ 1 confirms
our earlier observation that the transition in the ran-
dom model looks in many respects like it belongs to the
quasiperiodic universality class at these sizes which are
too small to feel the full effects of the quenched random-
ness. Also note that the scaling exponent is consistently
slightly larger for the random model as compared to the
quasiperiodic one, which is congruent with the theory
that the random model is “en-route” to crossing over to
a different disorder dominated scaling regime with ν ≥ 2
at larger system sizes.

Summary and outlook: We systematically examined
the MBL transition in random and quasiperiodic models,
and found that the MBL phase is stable down to a smaller
disorder strength in the quasiperiodic case. Moreover,
finite-size scaling analysis near the transition strongly
suggests that the quasiperiodic model asymptotically be-
longs to a different universality class from the random
one. We find scaling exponents ν ∼ 1 for both models;
however while this exponent may be close to its asymp-
totic value for the quasiperiodic model (and in agreement
with the Harris-Luck bound), we know that the asymp-
totic scaling exponent in the disordered model must sat-
isfy ν ≥ 2/d because the width of the finite-size scaling
window is constrained to be greater than ∼ L−d/2 due
to sample-to-sample fluctuations from the quenched ran-
domness. Indeed, the sample-to-sample standard devia-
tion of the entanglement entropy in the random model
clearly shows that the effects of randomness are not fully
apparent, but growing strongly, at the sizes studied, and
many critical properties of the random models at these
sizes look similar to those of quasiperiodic models. In RG
terms, the transition in both the random and quasiperi-
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odic models appears to be governed by the same non-
random fixed point for the sizes accessible to ED, but
the random model is starting to crossover towards the
disorder dominated fixed point.

Additionally, the entanglement structure at the criti-
cal fixed points in RG studies [26, 27] indicates that the
asymptotic disorder-dominated regime in these random
models might only be apparent in samples larger than ∼
100 spins [25], which will most likely remain inaccessible
to both experimental and numerical work. Our work in-
dicates that there should be a greater focus on quasiperi-
odic models in finite-size studies of the MBL transition,
since the asymptotic scaling regime of the transition is
likely more accessible in such models. Further, it is possi-
ble that the MBL phase in quasiperiodic models is more
stable even in higher dimensions and for longer-ranged
interactions since the recent arguments [20] on the in-
stability of MBL due to rare, thermal inclusions arising
from disorder fluctuations don’t apply to quasiperiodic
models. Of course, a renormalization group study of the
transition in a quasiperiodic model, if possible, would be
a helpful next step for better understanding the proper-
ties of this new universality class. It is also intriguing to
ask whether the two cases studied in the present work
cover all universal possibilities for MBL transitions, or if
there are further classifications — say for example in the
case of a transition to an MBL phase accompanied by
the simultaneous development of spontaneous symmetry
breaking [7, 8, 40], or for MBL transitions in models with
correlated disorder with varying degrees of correlation.
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