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Two-leg bosonic ladders with flux harbor a remarkable vortex-hole duality between the weak-
coupling vortex lattice superfluids and strong-coupling charge-density-wave crystals. The strong-
coupling crystalline states, which are realized in the vicinity of π-flux, are independent of particle
statistics, and are related with the incompressible fractional quantum Hall states in the thin-cylinder
limit. These fully gapped ground states, away of π-flux, develop nonzero chiral (spin) currents.
Contact-interacting quantum gases permit exploration of this vortex-hole duality in experiments.

Dualities encode important non-perturbative informa-
tion in statistical, condensed matter and high-energy
physics, by mapping weak and strong coupling regimes
and providing a way for their unified description [1].

A quantum system, depending on conditions, can man-
ifest one of its dual natures profoundly. In a weakly cou-
pled gas or liquid, where positions of particles are not
fixed, at sufficiently low temperatures quantum effects
set in, and, as a result, Bose particles can develop phase
coherence and superfluidity. For strong repulsive inter-
particle interactions, crystals can form, where each par-
ticle is localized to a certain position in space to get as
far as possible from the others. Phases of particles, be-
ing conjugate variables of densities, fluctuate strongly in
crystals. Fluids can develop eddy currents, or vortices
when excited. In superfluids with global phase coher-
ence, vortices get topological protection by quantization.
Crystals also harbour excitations of topological nature -
e.g. point defects such as vacancies (holes).

The purpose of this letter is to demonstrate a spec-
tacular correspondence between the topological defects
of superfluids and crystals, referred in the following as
a vortex-hole duality, realized between weak and strong-
coupling regimes of bosonic ladders with flux.

Fig. 1 shows the microscopic configurations of local
particle currents (arrows) and densities (filled circles) of
a few dual weak and strong-coupling ground states of
bosonic ladders with flux. In weak-coupling limit the
phases of particles are the relevant degrees of freedom,
whereas in strong-coupling particle densities play a dom-
inant role. Vortices are indicated by letter V in those
plaquettes of Fig. 1, where

∫

�
∇Θdl = 2π + φ, where

Θ is local phase and integration is along the boundary
l of the plaquette �. Holes, defects of the local particle
density distribution, are localized on rungs, indicated by
letter H. Vortices (elementary loop-currents), topological
excitations of weak-coupling regime, repel each other [2]
(like same pole magnets) and vortex lattices (VL) at com-
mensurate vortex density ρV are dual to hole crystals of
charge-density-wave (CDW) states at ρH = ρV realized
in strong-coupling regime, as we will show. Table I sum-

FIG. 1. Microscopic structures of vortex-hole dual configu-
rations of weak (a), (c), (e) and strong-coupling (b), (d), (f)
ground states of bosonic ladders with flux. Dual configura-
tions are (a) ρV = 1/2 vs (b) ρH = 1/2, (c) ρV = 1/3 vs
(d) ρH = 1/3 and (e) ρV = 1/4 vs (f) ρH = 1/4. Note, that
in (a) particle densities are uniform along the ladder, and in
(b) particle currents do not show modulations. In contrast,
in (c) and (e) particle densities show modulations, similar to
particle currents in (d) and (f).

marizes the weak and strong-coupling duality relations.
In the weak coupling regime of bosonic ladders few VL su-
perfluids were observed [3, 4] to survive quantum fluctua-
tions on top of classical Josephson-junction (JJ) limit [5].
A vortex in classical JJ limit, where phase at each ladder
site has definite value, carries a quantum of a fluxoid and
is localized on ξV ∼

√

J/2J⊥ plaquettes [2]. Numerical
simulations of Bose-Hubbard model on a two-leg ladder
with flux showed that particle densities get depleted in
the plaquettes where vortices sit, when including quan-
tum fluctuations, and topological excitations of the VL
states are domain walls, carrying fractional fluxoids [3, 4].
Contact-interacting cold quantum gases loaded in one-



2

Weak-coupling (JJ) Strong-coupling (quantum Hall)

Particle phases, flux←→ Particle densities, chem. potential

Meissner state ←→ Mott insulator

Topological excitations

Vortices ←→ Holes

Vortex lattices, ρV ←→ Charge-Density-Waves, ρH = ρV

Top. excitations (domain walls)

Fractional fluxoids ←→ Fractional charge

Vortex liquids ←→ Superfluids

TABLE I. Duality relations between weak and strong-
coupling regimes of bosonic ladders with flux. VL states
shown in Fig. 1 (a), (c), and (e) survive moderate quantum
fluctuations, due to the coherence of the multi-boson tunnel-
ings between the ladder legs.

dimensional lattices, with additional second ’synthetic’
dimension, can explore this duality in the presence of
a homogeneous gauge field. The quantum engineering of
synthetic orbital magnetism in neutral cold atom optical-
lattices has achieved a tremendous progress during the
recent years [6–8]. In particular the synthetic-dimension
approach [9], that combines a one dimensional optical
lattice system with laser assisted transitions between the
M internal degrees of freedom which form a compact ar-
tificial rung-dimension, allowed for further promising ex-
perimental realizations of M -leg ladder-like lattices with
an artificial magnetic flux [10–12]. Since all particles on
the same synthetic dimensional rung share the same op-
tical lattice site, contact-interactions lead to exotic long-
ranged interactions along the rungs, which for typical
systems [10, 11] may be assumed to be SU(M) sym-
metric. The interplay of long-ranged interactions along
the synthetic dimension and homogeneous gauge fields
has attracted a considerable recent attention, as it gives
rise to the ground states bearing analogies with quantum
Hall-like behavior [13–21], or exhibiting exotic quantum
magnetism [4, 18, 22–31].
Model- We consider two-component, M = 2, case and

introduce index ζ = 0, 1, running along the synthetic
dimension. Our microscopic model is a one-dimensional
SU(2) symmetric Bose-Hubbard model with spin-orbit
coupling, which is equivalent to spinless bosons on two-
leg ladder with flux and with the same onsite interactions
as interactions along rungs,

H =− J

L
∑

j=1;ζ=0,1

[b†j+1,ζbj,ζ + b†j,ζbj+1,ζ ]− µ
∑

j

nj (1)

− J⊥
∑

j

[eiφjb†j,1bj,0 +H.c.] +
U

2

∑

j,ζ,ζ′

nj,ζnj,ζ′ .

bj,ζ denotes bosonic annihilation operator on ladder site
j, ζ and nj =

∑

ζ nj,ζ denotes particle density on rung
j. L is the total number of sites along the real space

direction, hoppings along ladder legs/rungs are denoted
by J/J⊥ respectively and U is the Hubbard interaction
strength.

We will study Model (1) for U ≫ J, J⊥, which is rele-
vant for experiments involving a confinement by a deep
optical lattice where the interaction U becomes the dom-
inant energy scale. We consider the limit of U → ∞,
the so called rung-hard-core limit and address the effects
of finite U in supplementary materials [32]. Since the
exchange of particles is forbidden in the rung-hard-core
limit, we need not specify statistics of the particles. Par-
ticle density is denoted by ρ =

∑

j〈nj〉/L = N/L. In
particular in the rung-hard-core limit the maximal par-
ticle density is one particle per ladder rung ρ = 1. The
density of holes is defined as ρH = 1− ρ.

One immediately notices that for a π-flux, the spiraling
in-plane magnetic field of the Model (1) becomes a stag-
gered field directed along x axes in spin space. Hence
we define an order parameter, corresponding to emer-
gent U(1) symmetry at π-flux - the expectation value of

2Sx =
∑

j 2S
x
j =

∑

j b
†
j,0bj,1 +H.c..

CDW states - Remarkably, as we will show, the stag-
gered field hard-core Hubbard model exhibits a devil-
staircase like structure of CDW phases at fractional fill-
ings 1/2 ≤ ρ < 1. These CDW states are stabilized due
to the effective interplay between interactions and strong
magnetic field which tends to localize the particle in tight
cyclotron orbitals. At unit-filling ρ = 1, the ground state
is a perfect Néel-Mott insulator state 2〈Sx

j 〉 = (−1)j (at
U = ∞, π-flux and ρ = 1 the Néel-Mott insulator is an
exact eigenstate and ground state of Model (1)). The
staggered field induced Néel order at φ = π plays a cru-
cial role in localizing the holes and for emergence of CDW
states. This becomes clear if one introduces a single hole
on top of unit-filling for U = ∞. Then, since particles can
not pass each other and since hopping does not flip spin
of the particles, hole motion will scramble Néel order, by
creating a string of displaced particles, which tends to
bind the single hole to their initial positions [32].

Nevertheless, one can imagine that two nearest-
neighbour holes can move together by forming a bound
state, avoiding frustration of the Néel order. The analytic
solution of two-hole problem for Fermi-Hubbard model
shows that two holes when introduced on top of the
Néel-Mott state, form bound states (and this happens in

fourth order of J) only for U < Uc, where Uc ≃ 4J
5

3 /J
2

3

⊥

for J⊥ ≪ J and Uc = 4
√
6J⊥ for J⊥ ≫ J [47]. At U = ∞

(where Fermi and Bose-Hubbard models are equivalent),
in the ground state holes stay far apart of each other
[32], and due to localized character of single-hole states
the CDW phases are formed at rational (commensurate
with lattice) hole densities, exactly in the same way as VL
states are formed in classical JJ limit [2]: it is a result of
the competition between the repulsion among holes (that
tries to space holes uniformly apart of each other) and
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FIG. 2. The dependence of vortex density on flux ρV (φ)
in weak-coupling classical JJ limit and the hole density de-
pendence on chemical potential ρH(µ) in the strong-coupling
U = ∞, φ = π limit [32] due to vortex-hole duality exhibit
a remarkable similarity. With doubling J⊥/J from (a) to (b)
fewer plateaus are formed in ρV (φ) and ρH(µ) curves.

J⊥ that binds holes to rungs.

It is also expected from the above considerations at π-
flux (especially in the limit of tightly localized on-rung
holes J⊥ ≫ J) that the largest hole density for CDW
states in the case of contact interactions exhibits a hole
on every other rung, the CDW state at ρH = ρ = 1/2,
which is also a fully polarized state. When adding holes
on top of the CDW state at ρH = 1/2, they can move
via second order processes ∼ J2/J⊥maintaining the fully
polarized background. Hence states for ρH > 1/2 are ex-
pected to be gapless, but showing CDW order with a peri-
odicity of 2 rungs, referred as supersolid for J⊥ ≫ J [48].
One can easily obtain analytical ground state proper-
ties of this supersolid ground state for any J⊥ in hard-
core limit at π-flux. Hence, for 0 < ρ < 1/2 we obtain

for the equation of state ρ(µ) = arccos
[

−J2

⊥
+µ2

2J2 − 1
]

/π.

The spontaneously developed density imbalance between
the even and odd rungs in the supersolid ground state,
OCDW =

∑

j(−)j〈nj〉/L, is for any J⊥ given by,

OCDW = J⊥

π
√

4J2+J2

⊥

F
[

πρ, 4J2

4J2+J2

⊥

]

, with the elliptic in-

tegral of the second kind F(φ, k). Note, that CDW order
of the supersolid state saturates to a maximal possible
value for J⊥/J → ∞ [48].

For finite U < ∞ at φ = π, a single hole on top of
unit-filling can gain kinetic energy by second-order hop-
ping ∼ J2/(U+2J⊥) without leaving behind a perturbed
Néel string, hence CDW states with ρH ≪ 1 get washed-
out quickly for U < ∞. In addition, with reducing U
from hard-core, particle statistics starts to show up and
CDW and supersolid states turn out to be more robust
for bosons than for fermions [49]. A detailed numerical
analysis [32] shows that for example the CDW2/3 phase
remains stable for U & 20J for bosons and U & 30J for
fermions.

Numerics - In order to obtain a quantitative phase
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FIG. 3. Ground state phase diagram in the parameter space
of µ and J⊥ for U = ∞ and φ = π. For clarity only the
most stable fractional CDW phases are shown. Inset shows
equation of state ρ = ρ(µ) of the U =∞ ladder at π-flux for
(from left to right) J⊥ = J , J/2 and 0.

diagram in strong-coupling we perform density matrix
renormalization group (DMRG) [50, 51] calculations of
Model (1). For ρ ≥ 1/2 and φ = π, due to strong lo-
calization of the holes, infinite DMRG simulations turn
out to be very efficient and give extent and structure of
the (largest) CDW-phases consistent with the results of
finite system size DMRG-simulations [32].

Fig. 1 compares dual configurations of local parti-
cle densities and currents of weak and strong coupling
regimes of bosonic ladders. The microscopic structures of
weak-coupling configurations have already been obtained
for a single-component Bose-Hubbard model on a two-leg
ladder with flux in Ref. [3, 4]. Strong-coupling configura-
tions are obtained slightly away of π-flux, for Model (1)
at U = ∞, where one can see that for ρH < 1/2 local
rung and leg-currents also show modulations. Exactly at
π-flux all currents vanish in strong-coupling limit. How-
ever, away of π−flux CDW states support non-zero chiral
(spin) current.

In Fig. 2, for different values of J⊥/J , we compare
the vortex-density-vs-flux curves, obtained from phase
only model corresponding to classical JJ limit of bosonic
ladder [32], with the hole-density-vs-chemical-potential
curves obtained for Model (1) at U = ∞ at π-flux.

The phase diagram at π-flux for U = ∞, in the pa-
rameter space of µ/J and J⊥/J , is summarized in Fig. 3.
The inset shows ρ(µ)-curves for different values of J⊥/J .

In the weak-coupling picture including quantum fluctu-
ations (of phases) introduces a mobility of vortices, that
can melt VL states into vortex liquids [5]. Analogously
in the strong-coupling limit away of π-flux CDW crystals
can melt into superfluids [32]. In Fig. 4 we present the
ground state phase diagram as function of φ and ρ for
U = ∞. Besides Meissner (M-SF) and vortex superfluid
(V-SF) phases we observe a Meissner Mott-insulator (spi-
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FIG. 4. Ground state phases in parameter space of flux and
density for U = ∞ and J⊥ = J . Dots indicate CDW states
at rational values of ρ > 1/2 at φ = π [53]. Inset shows
corresponding phase diagram for J ≪ J⊥ when number of
legs M →∞.

ral MI) phase (which at φ = π evolves into Néel MI) and
for φ ≃ π, the emerging devil’s staircase like set of CDW
phases at fractional fillings and a supersolid (SS) ground
state [52].

Relation with quantum Hall - In the following we will
consider cases corresponding to M > 2 and assume that
L ≫ M . We note that region of stability of the CDW-
phases may be considerably increased with increasing
number of components M and assuming periodic bound-
ary conditions along rungs (cylinder or torus geometry).
Moreover, following the discussion of Ref. [15], increas-
ing M allows us to relate observed CDW states to frac-
tional quantum Hall states in thin-cylinder limit. In case
of M > 2-leg cylinder, the Hoffstadter-Harper model
Eq. (1) is consistently defined for a flux φ multiple of
2π
M . We have checked that up to M = 6 at 2π

M flux, simi-
lar picture as described for two-leg ladder at π-flux holds.
Namely, for low densities, ρ < 1

M , ground states are gap-
less, with spontaneously formed long-range modulated
density, CDW 1

M

. For densities ρ > 1
M a devil’s staircase

like set of CDW states is expected to emerge. For U = ∞
limit same arguments can be used to explain this picture,
as for the two-leg ladders at π-flux [32]. This leads us in
the limit M → ∞ to the ground state phase diagram as
sketched in the inset of Fig. 4. For particle fillings ρ < φ

2π
the ground states are gapless and exhibit a CDW-order
of period 2π

φ . For larger fillings ρ > φ
2π a region of fully

gapped CDWρ states is formed due to the interplay of
commensurate density and periodic potential.

The above discussion allows us to follow the rela-
tion between the emerging devil’s staircase of fractional
CDW-phases for M -leg cylinder at φ = 2π/M , realized
for 1/M ≤ ρ ≤ 1 with the similar incompressible states
of quantum Hall system in thin-cylinder limit [54–58] re-
alized for filling 1/M ≤ ν ≤ 1 [32]. Recent works [15–17]
indicate that CDW states of M -leg ladders approach cor-
responding fractional quantum Hall states also in topo-
logical properties with increasing M .

Summarizing, we have presented a unifying view of
weak and strong-coupling physics of interacting bosons
on two-leg ladders with flux based on vortex-hole duality.
This is a broader version of exact duality mappings (such
as Kramers-Wannier duality) and implies the equivalence
between: the mechanisms of the emergence of VL and
CDW states, the ground state degeneracies of the dual
configurations, and quantum numbers of topological ex-
citations on top of the dual ground states. All these prop-
erties of weak and strong-coupling dual ground states are
identical under vortex-hole exchange [59]. Hence, duality
can be used as a unifying language for describing weak-
coupling and strong-coupling phases of many-body sys-
tems, even when there is no exact symmetry mappings
between the two, as suggested for two-dimensional sys-
tems [60, 61]. Once the strongly interacting regime is
reached, the predicted vortex-hole duality may be ob-
served within state-of-the-art cold-atom experiments in
the near future [32].

We also showed that strong contact interactions give
rise to a rich phase diagram for (fermionic as well as
bosonic) quantum gases in a one-dimensional lattice,
with an additional second synthetic dimension, in the
presence of the uniform gauge field. In particular devil’s
staircase-like structure of CDW states emerges at π-
flux without the need of long-range (e.g. dipolar) in-
teractions between the particles, which can be related
with the fractional quantum Hall states in thin-cylinder
limit [15, 16, 58]. Hence, two cornerstone condensed mat-
ter systems (both defined on two-leg ladder lattices) -
the classical Josephson-junctions array and the quantum
Hall system - can be related to each other through the
vortex-hole duality [62].

On practical side, due to duality, we expect that
in thermodynamic limit a critical value of hopping
anisotropy exists in strong coupling limit Jc

⊥/J , like
Aubry’s breaking-of-analyticity point in weak-coupling
classical JJ limit [64], where devil’s staircase of density
vs chemical potential curve changes from incomplete to
complete one. This expectation is consistent with our
numerical observation shown in Fig. 2 and in the inset
of Fig. 3, where one can see that with increasing J⊥/J
less and less densities are realized in the CDW staircase
as function of the chemical potential.
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