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Two-leg bosonic ladders with flux harbor a remarkable vortex-hole duality between the weak-
coupling vortex lattice superfluids and strong-coupling charge-density-wave crystals. The strong-
coupling crystalline states, which are realized in the vicinity of w-flux, are independent of particle
statistics, and are related with the incompressible fractional quantum Hall states in the thin-cylinder
limit. These fully gapped ground states, away of m-flux, develop nonzero chiral (spin) currents.
Contact-interacting quantum gases permit exploration of this vortex-hole duality in experiments.

Dualities encode important non-perturbative informa-
tion in statistical, condensed matter and high-energy
physics, by mapping weak and strong coupling regimes
and providing a way for their unified description [1].

A quantum system, depending on conditions, can man-
ifest one of its dual natures profoundly. In a weakly cou-
pled gas or liquid, where positions of particles are not
fixed, at sufficiently low temperatures quantum effects
set in, and, as a result, Bose particles can develop phase
coherence and superfluidity. For strong repulsive inter-
particle interactions, crystals can form, where each par-
ticle is localized to a certain position in space to get as
far as possible from the others. Phases of particles, be-
ing conjugate variables of densities, fluctuate strongly in
crystals. Fluids can develop eddy currents, or vortices
when excited. In superfluids with global phase coher-
ence, vortices get topological protection by quantization.
Crystals also harbour excitations of topological nature -
e.g. point defects such as vacancies (holes).

The purpose of this letter is to demonstrate a spec-
tacular correspondence between the topological defects
of superfluids and crystals, referred in the following as
a vortex-hole duality, realized between weak and strong-
coupling regimes of bosonic ladders with flux.

Fig. 1 shows the microscopic configurations of local
particle currents (arrows) and densities (filled circles) of
a few dual weak and strong-coupling ground states of
bosonic ladders with flux. In weak-coupling limit the
phases of particles are the relevant degrees of freedom,
whereas in strong-coupling particle densities play a dom-
inant role. Vortices are indicated by letter V in those
plaquettes of Fig. 1, where fl:l VOdl = 2w + ¢, where
O is local phase and integration is along the boundary
l of the plaquette [J. Holes, defects of the local particle
density distribution, are localized on rungs, indicated by
letter H. Vortices (elementary loop-currents), topological
excitations of weak-coupling regime, repel each other [2]
(like same pole magnets) and vortex lattices (VL) at com-
mensurate vortex density py are dual to hole crystals of
charge-density-wave (CDW) states at pg = py realized
in strong-coupling regime, as we will show. Table I sum-
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FIG. 1. Microscopic structures of vortex-hole dual configu-
rations of weak (a), (c), (e) and strong-coupling (b), (d), (f)
ground states of bosonic ladders with flux. Dual configura-
tions are (a) pv = 1/2 vs (b) pg = 1/2, (¢) pv = 1/3 vs
(d) pg =1/3 and (e) pv = 1/4 vs (f) pag = 1/4. Note, that
in (a) particle densities are uniform along the ladder, and in
(b) particle currents do not show modulations. In contrast,
in (¢) and (e) particle densities show modulations, similar to
particle currents in (d) and (f).

marizes the weak and strong-coupling duality relations.
In the weak coupling regime of bosonic ladders few VL su-
perfluids were observed [3, 4] to survive quantum fluctua-
tions on top of classical Josephson-junction (JJ) limit [5].
A vortex in classical JJ limit, where phase at each ladder
site has definite value, carries a quantum of a fluxoid and
is localized on &y ~ +/J/2J, plaquettes [2]. Numerical
simulations of Bose-Hubbard model on a two-leg ladder
with flux showed that particle densities get depleted in
the plaquettes where vortices sit, when including quan-
tum fluctuations, and topological excitations of the VL
states are domain walls, carrying fractional fluxoids [3, 4].

Contact-interacting cold quantum gases loaded in one-



Weak-coupling (JJ)

Particle phases, flux <+ Particle densities, chem. potential

Strong-coupling (quantum Hall)

Meissner state <+t Mott insulator
Topological excitations
Holes

Vortex lattices, py <4 Charge-Density-Waves, pg = pv

Vortices >

Top. excitations (domain walls)

Fractional fluxoids <4 Fractional charge

Vortex liquids 1 Superfluids

TABLE I. Duality relations between weak and strong-
coupling regimes of bosonic ladders with flux. VL states
shown in Fig. 1 (a), (c), and (e) survive moderate quantum
fluctuations, due to the coherence of the multi-boson tunnel-
ings between the ladder legs.

dimensional lattices, with additional second ’synthetic’
dimension, can explore this duality in the presence of
a homogeneous gauge field. The quantum engineering of
synthetic orbital magnetism in neutral cold atom optical-
lattices has achieved a tremendous progress during the
recent years [6-8]. In particular the synthetic-dimension
approach [9], that combines a one dimensional optical
lattice system with laser assisted transitions between the
M internal degrees of freedom which form a compact ar-
tificial rung-dimension, allowed for further promising ex-
perimental realizations of M-leg ladder-like lattices with
an artificial magnetic flux [10-12]. Since all particles on
the same synthetic dimensional rung share the same op-
tical lattice site, contact-interactions lead to exotic long-
ranged interactions along the rungs, which for typical
systems [10, 11] may be assumed to be SU(M) sym-
metric. The interplay of long-ranged interactions along
the synthetic dimension and homogeneous gauge fields
has attracted a considerable recent attention, as it gives
rise to the ground states bearing analogies with quantum
Hall-like behavior [13-21], or exhibiting exotic quantum
magnetism [4, 18, 22-31].

Model- We consider two-component, M = 2, case and
introduce index ¢ = 0,1, running along the synthetic
dimension. Our microscopic model is a one-dimensional
SU(2) symmetric Bose-Hubbard model with spin-orbit
coupling, which is equivalent to spinless bosons on two-
leg ladder with flux and with the same onsite interactions
as interactions along rungs,

L

H==J > [l bic+bl b —pd ny (1)
j=15¢=0,1 j
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bj.¢c denotes bosonic annihilation operator on ladder site
J,C and nj = > .- nj¢ denotes particle density on rung
j. L is the total number of sites along the real space

direction, hoppings along ladder legs/rungs are denoted
by J/J) respectively and U is the Hubbard interaction
strength.

We will study Model (1) for U > J, J,, which is rele-
vant for experiments involving a confinement by a deep
optical lattice where the interaction U becomes the dom-
inant energy scale. We consider the limit of U — o0,
the so called rung-hard-core limit and address the effects
of finite U in supplementary materials [32]. Since the
exchange of particles is forbidden in the rung-hard-core
limit, we need not specify statistics of the particles. Par-
ticle density is denoted by p = > .(n;)/L = N/L. In
particular in the rung-hard-core limit the maximal par-
ticle density is one particle per ladder rung p = 1. The
density of holes is defined as pyg =1 — p.

One immediately notices that for a w-flux, the spiraling
in-plane magnetic field of the Model (1) becomes a stag-
gered field directed along x axes in spin space. Hence
we define an order parameter, corresponding to emer-
gent U(1) symmetry at w-flux - the expectation value of
25% = 37,258 =Y bl bj1 + Hec..

CDW states - Remarkably, as we will show, the stag-
gered field hard-core Hubbard model exhibits a devil-
staircase like structure of CDW phases at fractional fill-
ings 1/2 < p < 1. These CDW states are stabilized due
to the effective interplay between interactions and strong
magnetic field which tends to localize the particle in tight
cyclotron orbitals. At unit-filling p = 1, the ground state
is a perfect Néel-Mott insulator state 2(S7) = (—1)7 (at
U = oo, m-flux and p = 1 the Néel-Mott insulator is an
exact eigenstate and ground state of Model (1)). The
staggered field induced Néel order at ¢ = 7 plays a cru-
cial role in localizing the holes and for emergence of CDW
states. This becomes clear if one introduces a single hole
on top of unit-filling for U = oco. Then, since particles can
not pass each other and since hopping does not flip spin
of the particles, hole motion will scramble Néel order, by
creating a string of displaced particles, which tends to
bind the single hole to their initial positions [32].

Nevertheless, one can imagine that two nearest-
neighbour holes can move together by forming a bound
state, avoiding frustration of the Néel order. The analytic
solution of two-hole problem for Fermi-Hubbard model
shows that two holes when introduced on top of the
Néel-Mott state, form bound states (and this happens in

fourth order of J) only for U < U, where U, ~ 4Jg/JL%
for J, < Jand U, = 4v6.J for J, > J [47]. At U = oo
(where Fermi and Bose-Hubbard models are equivalent),
in the ground state holes stay far apart of each other
[32], and due to localized character of single-hole states
the CDW phases are formed at rational (commensurate
with lattice) hole densities, exactly in the same way as VL
states are formed in classical JJ limit [2]: it is a result of
the competition between the repulsion among holes (that
tries to space holes uniformly apart of each other) and
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FIG. 2. The dependence of vortex density on flux pv(¢)
in weak-coupling classical JJ limit and the hole density de-
pendence on chemical potential pz (@) in the strong-coupling
U = oo, ¢ = 7 limit [32] due to vortex-hole duality exhibit
a remarkable similarity. With doubling J, /J from (a) to (b)
fewer plateaus are formed in pv(¢) and pg(p) curves.

J that binds holes to rungs.

It is also expected from the above considerations at 7-
flux (especially in the limit of tightly localized on-rung
holes J, > J) that the largest hole density for CDW
states in the case of contact interactions exhibits a hole
on every other rung, the CDW state at py = p = 1/2,
which is also a fully polarized state. When adding holes
on top of the CDW state at py = 1/2, they can move
via second order processes ~ J?2/J| maintaining the fully
polarized background. Hence states for py > 1/2 are ex-
pected to be gapless, but showing CDW order with a peri-
odicity of 2 rungs, referred as supersolid for J, > J [48].
One can easily obtain analytical ground state proper-
ties of this supersolid ground state for any J, in hard-
core limit at 7-flux. Hence, for 0 < p < 1/2 we obtain

272

The spontaneously developed density imbalance between
the even and odd rungs in the supersolid ground state,
Ocpw = Zj(—)j (n;j)/L, is for any J, given by,
Jo
m\/4J2 4 J2
tegral of the second kind F(¢, k). Note, that CDW order
of the supersolid state saturates to a maximal possible
value for J, /J — oo [48].

For finite U < oo at ¢ = m, a single hole on top of
unit-filling can gain kinetic energy by second-order hop-
ping ~ J?/(U+2J ) without leaving behind a perturbed
Néel string, hence CDW states with py < 1 get washed-
out quickly for U < oo. In addition, with reducing U
from hard-core, particle statistics starts to show up and
CDW and supersolid states turn out to be more robust
for bosons than for fermions [49]. A detailed numerical
analysis [32] shows that for example the CDW, /5 phase
remains stable for U 2 20.J for bosons and U 2 30.J for
fermions.

for the equation of state p(u) = arccos {7Ji+“2 - 1} /7.

Ocpw = F [Wp, %ﬂ , with the elliptic in-

Numerics - In order to obtain a quantitative phase
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FIG. 3. Ground state phase diagram in the parameter space
of p and J; for U = oo and ¢ = w. For clarity only the
most stable fractional CDW phases are shown. Inset shows
equation of state p = p(u) of the U = oo ladder at m-flux for
(from left to right) J, = J, J/2 and 0.

diagram in strong-coupling we perform density matrix
renormalization group (DMRG) [50, 51] calculations of
Model (1). For p > 1/2 and ¢ = m, due to strong lo-
calization of the holes, infinite DMRG simulations turn
out to be very efficient and give extent and structure of
the (largest) CDW-phases consistent with the results of
finite system size DMRG-simulations [32].

Fig. 1 compares dual configurations of local parti-
cle densities and currents of weak and strong coupling
regimes of bosonic ladders. The microscopic structures of
weak-coupling configurations have already been obtained
for a single-component Bose-Hubbard model on a two-leg
ladder with flux in Ref. [3, 4]. Strong-coupling configura-
tions are obtained slightly away of m-flux, for Model (1)
at U = oo, where one can see that for py < 1/2 local
rung and leg-currents also show modulations. Exactly at
m-flux all currents vanish in strong-coupling limit. How-
ever, away of m—flux CDW states support non-zero chiral
(spin) current.

In Fig. 2, for different values of J, /.J, we compare
the vortex-density-vs-flux curves, obtained from phase
only model corresponding to classical JJ limit of bosonic
ladder [32], with the hole-density-vs-chemical-potential
curves obtained for Model (1) at U = oo at w-flux.

The phase diagram at w-flux for U = oo, in the pa-
rameter space of u/J and J, /J, is summarized in Fig. 3.
The inset shows p(u)-curves for different values of J, /.J.

In the weak-coupling picture including quantum fluctu-
ations (of phases) introduces a mobility of vortices, that
can melt VL states into vortex liquids [5]. Analogously
in the strong-coupling limit away of w-flux CDW crystals
can melt into superfluids [32]. In Fig. 4 we present the
ground state phase diagram as function of ¢ and p for
U = co. Besides Meissner (M-SF) and vortex superfluid
(V-SF) phases we observe a Meissner Mott-insulator (spi-
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FIG. 4. Ground state phases in parameter space of flux and
density for U = oo and J; = J. Dots indicate CDW states
at rational values of p > 1/2 at ¢ = 7 [53]. Inset shows
corresponding phase diagram for J < J; when number of
legs M — oo.

ral MI) phase (which at ¢ = 7 evolves into Néel MI) and
for ¢ ~ 7, the emerging devil’s staircase like set of CDW
phases at fractional fillings and a supersolid (SS) ground
state [52].

Relation with quantum Hall - In the following we will
consider cases corresponding to M > 2 and assume that
L > M. We note that region of stability of the CDW-
phases may be considerably increased with increasing
number of components M and assuming periodic bound-
ary conditions along rungs (cylinder or torus geometry).
Moreover, following the discussion of Ref. [15], increas-
ing M allows us to relate observed CDW states to frac-
tional quantum Hall states in thin-cylinder limit. In case
of M > 2-leg cylinder, the Hoffstadter-Harper model
Eq. (1) is consistently defined for a flux ¢ multiple of
%. We have checked that up to M = 6 at % flux, simi-
lar picture as described for two-leg ladder at m-flux holds.
Namely, for low densities, p < %, ground states are gap-
less, with spontaneously formed long-range modulated
density, CDW L For densities p > ﬁ a devil’s staircase
like set of CDW states is expected to emerge. For U = oo
limit same arguments can be used to explain this picture,
as for the two-leg ladders at w-flux [32]. This leads us in
the limit M — oo to the ground state phase diagram as
sketched in the inset of Fig. 4. For particle fillings p < %
the ground states are gapless and exhibit a CDW-order
of period 2%. For larger fillings p > % a region of fully
gapped CDW,, states is formed due to the interplay of
commensurate density and periodic potential.

The above discussion allows us to follow the rela-
tion between the emerging devil’s staircase of fractional
CDW-phases for M-leg cylinder at ¢ = 27/M, realized
for 1/M < p < 1 with the similar incompressible states
of quantum Hall system in thin-cylinder limit [54-58] re-
alized for filling 1/M < v <1 [32]. Recent works [15-17]
indicate that CDW states of M-leg ladders approach cor-
responding fractional quantum Hall states also in topo-
logical properties with increasing M.

Summarizing, we have presented a unifying view of
weak and strong-coupling physics of interacting bosons
on two-leg ladders with flux based on vortex-hole duality.
This is a broader version of exact duality mappings (such
as Kramers-Wannier duality) and implies the equivalence
between: the mechanisms of the emergence of VL and
CDW states, the ground state degeneracies of the dual
configurations, and quantum numbers of topological ex-
citations on top of the dual ground states. All these prop-
erties of weak and strong-coupling dual ground states are
identical under vortex-hole exchange [59]. Hence, duality
can be used as a unifying language for describing weak-
coupling and strong-coupling phases of many-body sys-
tems, even when there is no exact symmetry mappings
between the two, as suggested for two-dimensional sys-
tems [60, 61]. Once the strongly interacting regime is
reached, the predicted vortex-hole duality may be ob-
served within state-of-the-art cold-atom experiments in
the near future [32].

We also showed that strong contact interactions give
rise to a rich phase diagram for (fermionic as well as
bosonic) quantum gases in a one-dimensional lattice,
with an additional second synthetic dimension, in the
presence of the uniform gauge field. In particular devil’s
staircase-like structure of CDW states emerges at -
flux without the need of long-range (e.g. dipolar) in-
teractions between the particles, which can be related
with the fractional quantum Hall states in thin-cylinder
limit [15, 16, 58]. Hence, two cornerstone condensed mat-
ter systems (both defined on two-leg ladder lattices) -
the classical Josephson-junctions array and the quantum
Hall system - can be related to each other through the
vortex-hole duality [62].

On practical side, due to duality, we expect that
in thermodynamic limit a critical value of hopping
anisotropy exists in strong coupling limit J¢/J, like
Aubry’s breaking-of-analyticity point in weak-coupling
classical JJ limit [64], where devil’s staircase of density
vs chemical potential curve changes from incomplete to
complete one. This expectation is consistent with our
numerical observation shown in Fig. 2 and in the inset
of Fig. 3, where one can see that with increasing J, /J
less and less densities are realized in the CDW staircase
as function of the chemical potential.
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