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Motivated by recent optical lattice experiments [Choi et al., Science 352, 1547 (2016)], we study
the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show
that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are
a result of the competition between disorder and interactions. Our findings highlight the difficulty
in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization,
which cannot be captured by GMFT, and indicate the need for further experimental studies of this
system.
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Introduction: Ultracold atoms loaded into optical lattices
[1–3] offer ideal platforms to study localization [4, 5]. Ex-
amples in the noninteracting limit include fermionic band
insulators [6], and, in the presence of (quasi-)disorder,
Anderson insulators [7–12]. In clean systems, localization
can also occur because of interactions, producing Mott in-
sulators (MIs) [13–17]. Recent experimental studies have
explored the interplay between disorder and interactions
[18–28]. In the ground state of bosonic systems, this in-
terplay can generate the Bose-glass (BG) phase [29, 30].
The BG, like the bosonic MI, is characterized by a van-
ishing superfluid density but, unlike the MI, it is com-
pressible. At extensive energy densities above the ground
state, the interplay between disorder and interactions can
lead to a remarkable phenomenon known as many-body
localization (MBL) [31–33]. In the MBL phase, eigen-
state thermalization [34–36] does not occur [37].

Signatures of MBL were recently observed with
fermions [26, 27] and bosons in two dimensions (2D)
[28]. Our work is motivated by the latter experiment
(see Refs. [38, 39] for theoretical studies inspired by the
former). In Ref. [28], a MI with one boson per site was
prepared in a harmonic trap in a deep optical lattice.
All bosons in one half of the system were then removed
and the remaining half was allowed to evolve by lowering
the lattice depth, with or without disorder. During the
dynamics, the parity-projected occupation of the lattice
sites was measured using fluorescence imaging, allowing
the study of the evolution of the imbalance I between
the initially occupied and unoccupied halves. With no or
weak disorder, I vanished within times accessible exper-
imentally, i.e., it attained the value expected in thermal
equilibrium. But beyond a certain disorder strength, I
appeared to saturate to a nonzero value. This saturation
was taken as evidence for MBL [28].

Features of the experimental setup in Ref. [28] can lead
to a very slow equilibration of I to the point of making
it difficult to distinguish glassy behavior from the MBL
phase. First, the initial dynamics in the unoccupied half
of the trap is dominated by Anderson physics (because

of low site occupation). The second feature sets in at
longer times. The initial MI, before the removal of the
bosons in one half of the system, is close in energy to the
ground state after the lattice depth is lowered but the
system remains deep in the MI regime. The MI, in turn,
is close in energy to a BG with a site occupancy slightly
below one at the same interaction strength (if the disor-
der is strong enough to generate a BG). Therefore, the
dynamics resulting from the gradual decrease of the site
occupations in the occupied half of the system, after the
removal of the bosons in the other half, can be dominated
by excitations of the BG in the remaining half.

To study the impact of glassy physics we use GMFT
to model the dynamics of the experiments in Ref. [28].
GMFT provides qualitatively correct phase diagrams for
strongly interacting clean [40–43] and disordered [44–48]
(away from the tip of the Mott lobe) systems. It has
also been used to study non-equilibrium effects such as
the dynamical generation of molecular condensates [49]
and MIs [50], dipole oscillations [51], quantum quenches
[48, 52, 53], expansion dynamics [54, 55], and transport
in the presence of disorder [48, 56]. However, since the
Gutzwiller ansatz wavefunction is a product state, it has
zero entanglement entropy for any partitioning of the sys-
tem. GMFT is therefore capable of capturing BG dy-
namics but it cannot capture thermalization and MBL
phases [57], which after taken out of equilibrium, e.g.,
using a quantum quench, exhibit a linear [58] and loga-
rithmic [59] growth of the entanglement entropy, respec-
tively, with time.

We use GMFT to study the dynamics of initial states
under the same (or similar) conditions as the experiment
thus allowing direct comparison. We find that the GMFT
dynamics is similar but not quite the same as that in the
experiment. In particular, the GMFT state rebalances
more slowly, which motivates us to add a phenomenolog-
ical parameter to our theory to gradually remove slow
particles from data analysis because they are not accu-
rately captured by our theory. A single phenomenological
parameter significantly improves the agreement between
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theory and experiment.
Given the fact that GMFT cannot describe dynamics

in an MBL phase, our results raise concerns as to whether
experimental observations are the result of MBL or the
result of slow transport due to glassy dynamics. Only
the latter is captured by our GMFT treatment.
Model: We consider bosons in a 2D square lattice sub-
jected to disorder and a parabolic trapping potential, as
described by the Bose-Hubbard Hamiltonian:

Ĥ = −J
∑
〈ij〉

b̂†i b̂j +
U

2

∑
i

n̂i (n̂i − 1) +
∑
i

µin̂i, (1)

where b̂†i creates a boson at site i ≡ (ix, iy) and n̂i = b̂†i b̂i
is the site occupation operator. J parametrizes the tun-
neling between nearest-neighbor and U is the on-site re-
pulsive interaction. The chemical potential (µ), harmonic
trap (of strength Ω), and disorder potential (εi) are in
µi = −µ + Ω |i− r0|2 + εi, with r0 = (0, 0) chosen in
the center of 4 sites. We focus on a lattice with 31 × 31
sites in which, for the Hamiltonian parameters used here,
the sites at the edges are always empty. We consider
two types of disorder, with uniform and Gaussian dis-
tributions, whose strengths are denoted by ∆u and ∆g,
respectively. We set kB = ~ = 1.
Methods: We study the dynamics of zero and nonzero
temperature initial states. The density matrix within
GMFT is:

ρ̂ (t) =
∏
i

ρ̂i (t) =
∏
i

[ ∞∑
m,n=0

α(i)
mn (t) |m〉i i 〈n|

]
, (2)

where |n〉i is the state with n bosons at site i, and t de-
notes time. This ansatz decouples Eq. (1) into single-site
Hamiltonians: ĤMF

i = −J(φ∗i b̂i+φib̂
†
i )+(U/2)

∑
i n̂i(n̂i−

1)+µin̂i, where φi =
∑

j∈nni
Tr(ρ̂jb̂j) sums over neighbor

sites to i. Substituting Eq. (2) into the von Neumann
equation, i∂tρ̂ = [Ĥ, ρ̂], leads to the equation of motion
for α(i)

mn:

i∂tα
(i)
m,n =− Jφ∗i

[√
m+ 1α

(i)
m+1,n −

√
nα

(i)
m,n−1

]
− Jφi

[√
mα

(i)
m−1,n −

√
n+ 1α

(i)
m,n+1

]
+
U

2
[m (m− 1)− n (n− 1)]α(i)

m,n

+ µi (m− n)α(i)
m,n, (3)

which yields the time evolution of the site occupations:
ni(t) = Tr(ρ̂in̂i).

Following Ref. [28], we quantify the degree of localiza-
tion using the imbalance:

I(t) =
NL(t)−NR(t)

NL(t) +NR(t)
, (4)

where NL(t) =
∑
−lx≤ix<i0,|iy|≤ly nix,iy (t) and NR(t) =∑

i0≤ix≤lx,|iy|≤ly nix,iy (t), with an lx × ly central region
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Figure 1. The site occupations for quenched dynamics at
zero temperature. Columns (rows) depict results for different
disorder strengths (different times). At time t = 0 all bosons
in the right half of the system are removed and the remainder
evolves for t > 0. The t = 0 state is the ground state for a very
small hopping and no disorder. For t > 0, Gaussian disorder
of strength ∆g is introduced and the hopping is increased.
The state evolves for t ≥ 0 with no parameter changes.

of interest. ly is taken to be 2 to define a window 5
lattice sites wide in the y direction. We first set lx to
lW = 9, as in experiment. In Ref. [28], the lattice center
does not always coincide with the center of the harmonic
potential, and this causes an imperfect preparation of the
the initial state domain wall. To account for this, the
line separating the left and right sides of the system is
defined using i0 = 0 or i0 = 1. The imbalance is obtained
by averaging the two cases.

We also compute the inverse decay length, λ(t) [28].
To calculate λ(t) we first compute the average: n̄ix(t) =
(2ly+1)−1

∑
|iy|≤ly nix,iy (t). λ is then obtained by fitting:

n̄ix (t) /n̄0ix ∼ e
−λ(t) ix , (5)

where n̄0ix is the zero disorder steady-state density and
ix denotes a least squares fit from ix = 0 to lx.

For ρ̂ (t = 0), we take the ground state or a ther-
mal state of the initial Hamiltonian, such that ρ̂i =

Z−1i e−βĤ
MF
i (where β = 1/T is the inverse temperature

and Zi is the partition function). Our calculations in the
presence of disorder are done for an ensemble of disorder
realizations. Disorder-averaging over around 100 disor-
der realizations is sufficient for convergence.

Within GMFT, dynamics occur only when there are
non-vanishing values of the order parameter φi [see
Eq. (3)]. As a result, a pure MI state would exhibit no dy-
namics within GMFT. We find that, as in Refs. [55, 56],
the small region with a non-vanishing order parameter
generated by the harmonic trap at the edge of MI do-
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Figure 2. (a): Time evolution of the imbalance I for vari-
ous disorder strengths at initial temperature T = 0. Lines
show simulation results while points with error bars show ex-
perimental data [28]. The vertical dashed line marks a time
t∗ = 20 below which I barely changes within GMFT. The
experimental results are shifted to start at t∗. From bottom
to top the lines and symbols correspond to ∆g = 0, 3, 4, 8,
and 13. (b): Corresponding I for the same parameters but at
times t = 200 and 300 against disorder strength. The experi-
mental result after an evolution time of 187 are also plotted.
The inset shows the inverse decay length [Eq. (5)] from our
calculation at t = 200 and for the experiment after an evolu-
tion time t = 187. (c) and (d): The same as (a) and (b) but
with an analysis window resized from lW = 9 [as in (a) and
(b) following Ref. [28]] to l′W = 5, as shown in the schematic.
(e) and (f): The same as (c) and (d) but at non-zero temper-
ature. Here t∗ reduces to 8.

mains is sufficient to drive dynamics. Remarkably, we
will see that the ensuing dynamics measured by imbal-
ance is slower but similar to that in the experiments [28]
at long times. We will then show that decreasing lx to
phenomenologically remove particles in the MI state sig-
nificantly improves agreement with experiment.
Quenched dynamics: In the experiment [28] the dynam-
ics took place after lowering the lattice depth and intro-
ducing a disorder potential to a MI created in a deep
lattice and to which all atoms in one half of the system
were removed. From now on, we use the hopping pa-
rameter after the quench J = U/24.4 as our energy unit.
To create the initial state, we used the experimental pa-
rameters [28]: JI = 0.244, U = 24.4, Ω = 0.145, and
µ = 10.6. After free energy minimization, particles on the
right half of the system are manually removed [by setting
α
(ix>0)
m,n = δm,0δn,0 in Eq. (2)], leaving behind a particle

number comparable with the experiment, Nb ≈ 123. In
accordance with the experimental protocol [28], to gen-
erate disorder (at the evolution stage) we square a two-
dimensional array of uniformly distributed random num-
bers followed by a convolution with a Gaussian profile of
standard deviation 0.5. The disorder strength ∆g is de-
fined as the full width at half maximum of the resulting
disorder profile.

The first column in Fig. 1 depicts the evolution of the
site occupations in the absence of disorder. Here the par-
ticles expand to reach a steady state with no imbalance.
When disorder of strength ∆g = 8 is introduced, the mo-
tion slows considerably and an imbalance remains at the
latest time shown. For very strong disorder (∆g = 13),
the particles remain almost entirely in the initially occu-
pied region.

To quantitatively understand the dynamics, we plot
the imbalance against time in Fig. 2(a). For t < t∗, the
imbalance barely changes. This is an artifact of GMFT
for the initial state, which is mostly a MI domain. Be-
yond t∗, I vanishes rapidly in the clean limit and for weak
disorder. But, as the disorder strength increases, it takes
longer for I to reach the expected I = 0 steady state
value. In Fig. 2(a), we also plot the experimental results
taking t∗ to be the starting time for the experiments. The
GMFT and experimental results exhibit good agreement
for weak disorder strength, but the latter exhibit faster
relaxation as the disorder strength is increased.

In Fig. 2(b), we plot the imbalance alongside experi-
mental results [28], as a function of the disorder strength.
In our theoretical results, the upturn in I vs. ∆g

moves toward stronger disorder strengths as t increases.
A similar trend was seen in experiments for t . 200,
but the experimental results appeared to saturate for
200 . t . 300. For any given selected time, the upturn in
I vs. ∆g occurs at a smaller value of ∆g in GMFT when
compared to the experiments, which is expected given
the slower dynamics of the former seen in Fig. 2(a).
λ offers another way to quantify the degree of local-

ization by parameterizing the extent to which disorder
suppresses the relaxation of site occupations. The inset
in Fig. 2(b) shows λ versus ∆g for t = 200 and the ex-
perimental results for t = 187. The behavior of λ (inset)
is similar to that of I (main panel).

There are also differences between GMFT and exper-
iments. For example, at weak disorder strengths, the
experimental data of Fig. 2(b) exhibits oscillations not
captured by GMFT. These oscillations in turn impact
the comparison of the nature of upturns of I or λ near
∆g = 5.5, as they make it look sharper in the experimen-
tal results.

A key observable in identifying localization is the time
derivative of the imbalance, İ, at long times, as used
in observations of Anderson localization with ultracold
atoms [7–12]. The vanishing of İ at long times (and
in large system sizes) is a necessary condition for local-
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Figure 3. The solid (dashed) lines plot the normalized im-
balance where the right half of the trap was initialized to
a checkerboard (empty) pattern as shown in the insets. (a)
The normalized imbalance against time for various disorder
strengths. The pairs of (solid/dashed) lines correspond to uni-
form disorder ∆u = 0, 13 and 20 from bottom to top. (b) The
normalized imbalance at times t = 200 and 300 against disor-
der strength. The other parameters are U = 24.4, Ω = 0.145,
and µ = 4.

ization. The slope of I versus t obtained for the 4 latest
experimental times reported is −1.017(±1.028)×10−4 for
the largest disorder strength. Here we see that the ex-
perimental error is too large to definitively show a van-
ishing of the slope since the results are also consistent
with just a small slope. Within GMFT, we find a small
non-zero slope: −4.433(±0.053) × 10−4, for the largest
disorder strength. The small non-zero slope shows that
a slow rebalancing (as expected in the glassy state cap-
tured within GMFT) is consistent with experiment. Mea-
surements with smaller error bars and time scales much
longer than experimentally relevant time scales (such as
the trap and light scattering) would allow more direct
comparisons.

To understand the robustness of our findings within
GMFT, we have also studied initial states at finite tem-
peratures, different quench protocols, and dynamics in
the presence of a uniform disorder distribution. The sup-
plementary material shows that the latter two changes do
not have much impact on the imbalance dynamics at long
times. GMFT shows that the imbalance dynamics of a
BG or MI quenched into a disorder profile respond in
nearly the same way.
Phenomenological parameter: To improve comparison
with experiment we introduce a phenomenological pa-
rameter that excludes particles which move too slowly
within GMFT. GMFT underestimates the speed of the
MI under an applied field. The motion of the entire
trapped system is therefore slower than GMFT at long
times.

To account for the slow Mott particles we introduce
a phenomenological parameter to our GMFT analysis.
The inset of Fig. 2(d) shows a schematic of a resizing of
the window used to compute the imbalance. The rectan-
gles in the schematics indicate a decrease in lx in Eq. 4,

from lW to l′W . Our phenomenological parameter, lx,
therefore increases the relative rate of rebalancing be-
cause slow moving Mott particles near the left edge of
the system are excluded in the data analysis. Decreas-
ing µ also removes these particles. We find that tuning
either µ or lx allows us to fit I versus t to experimental
values with the same accuracy. We choose lx as our phe-
nomenological parameter and vary it to obtain a best fit
for the largest disorder, ∆g = 13.

Figures 2(c) and 2(d) plot the same as panels (a) and
(b) but with the new window size, l′W . Here there is much
better agreement with experiment because the relative
fraction of mobile to localized particles in our GMFT is
closer to experiment. Panels (e) and (f) include non-
zero temperature. In varying T we find little change for
T < J . T = 0.2J was chosen as a best fit for the largest
disorder. In Fig. 2(e) we see that t∗ diminishes and the
imbalance tends to level off quicker at long times, with a
slight increase in the slope to −4.816(±0.160)× 10−4.

The comparisons between theory and experiment in
Fig. 2 show that by adjusting a single phenomenological
parameter we can bring GMFT into better agreement
with experiments. We therefore conclude that the long-
time relaxation found in experiments can be interpreted
within GMFT as glassy dynamics consistent with the out
of equilibrium properties of a BG and its excitations.
Checkerboard case: The initial expansion of bosons in
the empty half of the trap in the presence of disorder is
expected to be dominated by Anderson physics, due to
the low site occupations. In order to test how enhancing
interactions by increasing site occupations affects the ex-
pansion, we have devised an “improved” initial state gen-
erated by emptying sites in one half of the system accord-
ing to a checkerboard pattern. The dynamics then pro-
ceeds by allowing the remaining bosons to evolve without
any change in the Hamiltonian parameters (no parame-
ter quenching). Before emptying sites, the system was in
the ground state.

Fig. 3 plots the normalized imbalance for the checker-
board pattern. The pattern speeds up the decay of
I(t)/I(0) by enhancing the effect of interactions during
the dynamics. It would be interesting to find out how
changes in the pattern used for the initial state change
the results in the experiments [28].
Discussion: Motivated by Ref. [28], we have studied
the dynamics of bosons in 2D lattices with disorder by
GMFT. We showed that theory becomes closer to ex-
periment by including temperature and a single phe-
nomenological parameter. We also showed that the fea-
tures observed in the experiments are robust for various
initial states: quenched MI, disordered superfluid, and
BG. Since GMFT misses the entanglement present in
MBL phases, evidence for MBL must lie in the differ-
ences between GMFT and experiments. We find that at
the present stage with only the data from Ref. [28], it
is difficult to tell if there is a qualitative or quantitative
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difference between GMFT and experiments. Further ex-
periments, particularly at longer times, will be needed
to unambiguously show that MBL is occurring. Avoid-
ing macroscopic mass transport, as done in Ref. [27], will
help rule out slow dynamics due to Anderson and BG
physics.
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