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We use integrability at weak coupling to compute fishnet diagrams for four-point correlation
functions in planar φ4 theory. The results are always multi-linear combinations of ladder integrals,
which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful
constraint on such linear combinations, leading to a natural conjecture for any fishnet diagram as
the determinant of a matrix of ladder integrals.

I. INTRODUCTION AND MAIN RESULT

Integrability is a powerful tool for exploring theories
such as planar N = 4 super-Yang-Mills (SYM) theory at
finite coupling [1–6]. It can also assist in the computa-
tion of individual Feynman diagrams, in scalar theories
directly [7, 8], or after suitably twisting the SYM the-
ory [9–11], or, more implicitly, through the “hexagonal-
ization” of correlation functions [5].

The Steinmann relations [12] provide stringent ana-
lytic constraints on multi-particle scattering amplitudes
by forbidding double discontinuities in overlapping chan-
nels. They have been applied extensively in the multi-
Regge limit, e.g. in refs. [13, 14]. Their far-reaching con-
sequences outside of this limit were recognized more re-
cently. Combined with the dual conformal symmetry of
scattering amplitudes in the SYM theory, they severely
restrict the types of functions that can appear, making
it possible to bootstrap the six-point amplitude to five
loops [15] and the (symbol of the) seven-point amplitude
to four loops [16] with very little additional input.

In this Letter, we combine integrability and the Stein-
mann relations in order to find a simple (conjectural)
result for the doubly-infinite class of Feynman graphs
depicted in fig. 1. They belong to a broader family
of conformal integrals which has attracted much atten-
tion over the years [17–25]. The black lines in the
figure provide the position-space interpretation of the
“fishnet” diagram, as a contribution to the correlation

function Gm,n(xi) = 〈φn2 (x1)φ†n2 (x2)φm1 (x3)φ†m1 (x4)〉, at
weak coupling, g2 ≡ λ/(4π)2 � 1, with φ1,2 two orthog-

onal complex scalars, φ†1,2 their complex conjugates, and

with λ = g2
YMNc the ’t Hooft coupling.

We are only interested in the first planar graph con-
tributing to this correlator. Given the R-charge assign-
ment, all lines must cross each other, as in fig. 1 with
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FIG. 1. Fishnet diagram in φ4 theory and its dual off-shell
(color-ordered) scattering amplitude.

the scalars’ quartic coupling λ/(2π)4 = g2/π2 (cf. the
10-point graph considered in ref. [26]). After integrat-
ing

∫
d4xk over each intersection point xk, k > 4, and

extracting a factor of the disconnected free propagators,
this very first contribution to the correlator reads

Gm,n(xi) =
g2mn

(x2
12)n(x2

34)m
× Φm,n(u, v) , (1)

where xij = xi − xj . The two conformal cross ratios are
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x2

13x
2
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x2
12x

2
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≡ zz̄

(1− z)(1− z̄) , v =
x2

14x
2
23

x2
12x

2
34

≡ u

zz̄
. (2)

Alternatively, we could use the strongly twisted theory
considered in refs. [9–11]. In that theory, the gluons and
fermions are decoupled, the correlator (1) is a particular
instance of the off-shell amplitudes discussed in refs. [11],
and fig. 1 is the only diagram contributing to it.

The blue lines in fig. 1 indicate a dual-graph, or
“momentum-space” (but not Fourier-transformed), in-
terpretation of the quantity as a contribution to a scat-
tering amplitude with four external massive momenta,



2

p1 = x23, p2 = x31, p3 = x14, p4 = x42, and all mass-
less internal lines. The Steinmann relations [12] for-
bid double discontinuities in the overlapping channels
(p1 + p2)2 = x2

12 and (p2 + p3)2 = x2
34. The momentum-

space interpretation looks like m ladders glued together.
The ladder integrals, corresponding to m = 1, were com-
puted long ago [17] in terms of classical polylogarithms.
They also belong to a class of iterated integrals called
single-valued harmonic polylogarithms (SVHPLs) [27]
with weight (number of iterated integrations) equal to
2n, where n is the loop number. The ladder integrals
will be the building blocks for the fishnet integrals.

We find that Φm,n(u, v) can be written, for m ≤ n, as

Φm,n(u, v) =

[
(1− z)(1− z̄)

z − z̄

]m
Im,n(z, z̄) , (3)

where Im,n is an iterated integral (a.k.a. pure function) of
weight 2mn. It is symmetric under 3 ↔ 4 (equivalently,
u↔ v, or z, z̄ ↔ 1/z, 1/z̄) and under z ↔ z̄, up to a sign,

Im,n(1/z, 1/z̄) = Im,n(z̄, z) = (−1)mIm,n(z, z̄) . (4)

Our main result is that Im,n is the determinant of an
m×m matrix,

Im,n = detM, Mij = cij Ln−m−1+i+j . (5)

The matrix elements are 1 × p ladder integrals Lp (see
eq. (16)) multiplied by rational numbers,

cij =


1, i = j,∏i
k=j+1 pk(pk − 1), i > j,

[cji|n→n+j−i]−1, i < j,

(6)

where pk = n−m−1+j+k. In the following, we discuss
how integrability and analyticity lead to eq. (5).

II. PENTAGONS, HEXAGONS, AND ALL THAT

In this section, we present two matrix-model-like
integral representations for the diagram in fig. 1, using
the integrability of planar SYM. They correspond to
two different ways of factorizing the fishnet diagram,
using the so-called flux-tube picture [2, 28], where the
operators are inserted along the edges of a null Wilson
loop, or the more recent approach proposed to study
three- [4] and higher-point functions [5, 6].

Flux tube picture. In the flux tube picture (fig. 2) the two
cross ratios map to the positions σ1,2 of the operators
along two light-like directions, z = −e2σ1 , z̄ = −e−2σ2 .
The correlator is viewed as a scattering of two beams on
top of the Gubser-Klebanov-Polyakov [29] background.
The beams are labelled by the scalars’ rapidities, u =
{u1, . . . , um},v = {v1, . . . , vn}, which are conjugate to
shifts in σ1 and σ2, respectively, and are separately con-
served throughout the entire process, thanks to integra-
bility. The form factor for the creation and absorption
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FIG. 2. The correlator can be put inside a null square Wilson
loop, with xµ4 = nµ, xµ2 = n̄µ, xµ3 = −e2σ1nµ, xµ1 = −e−2σ2 n̄µ,
and n2 = n̄2 = 0, n · n̄ = 1. Moving φ1,2 along the edges is the
same as changing the cross ratios z = −e2σ1 and z̄ = −e−2σ2 .

of a beam at the boundary of the square, or equivalently
the absolute value of the beam’s wave function, can be
parametrized in terms of pentagon transitions P [2]:

µ(u;σ1) =

m∏
i=1

µ(ui)e
2iuiσ1

m∏
i<j

1

P (ui|uj)P (uj |ui)
, (7)

with µ(u) = π sech(πu) and P (u|v) = Γ(iu − iv)/Γ( 1
2 +

iu)Γ( 1
2−iv). Integrating (7) over the rapidities gives back

the free propagator for m scalar fields inserted along the
null direction,

d(σ1)−m =

[
1

eσ1 + e−σ1

]m
=

∫
du

m!
µ(u;σ1) , (8)

with du =
∏
i dui/(2π) and 〈√−zφ(−zn)φ†(n)〉 =√−z/(1 − z) = 1/d(σ). Eq. (8) is also the spin-chain

scalar product in the so-called separated variables [30].
The same expression with ui → vi, m → n, σ1 → σ2

describes the second beam.
An essential property of flux-tube scattering is that it is

diffractionless and fully factorized. Hence, the m×n grid
in the diagram can be immediately taken into account
by inserting

∏m
i=1

∏n
j=1 S?(ui, vj), where S?(u, v) is the

transmission part of the mirror two-body S-matrix [31],

S?(u, v) =
πg2 sinh (π(u− v))

(u− v) cosh (πu) cosh (πv)
. (9)

The overall process is of order O(g2mn), in agreement
with the corresponding Feynman diagram.

Assembling all factors together, and dropping the pow-
ers of the coupling, we obtain the flux tube representation

Φm,n
dm1 d

n
2

=

∫
dudv

m!n!

m∏
i

µ(ui)
m+ne2iuiσ1

n∏
i

µ(vi)
m+ne2iviσ2

×
m∏
i<j

∆(ui, uj)

m,n∏
i,j

∆̃(ui, vj)

n∏
i<j

∆(vi, vj),

(10)
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FIG. 3. We can decompose the correlator using triangles
(a.k.a. hexagons). The red beam is made of m magnons, pro-
duced on the bottom triangle and absorbed on the top one.
The correlator is the scalar product between the two wave
functions.

where dv =
∏
i dvi/(2π), di = d(σi),

∆̃(u, v) =
sinh (π(u− v))

π(u− v)
=

∆(u, v)

(u− v)2
, (11)

and dividing by the disconnected propagators matches
the normalization (3). A similar integral has been used
to study 2-to-2 fermion flux-tube scattering [34].

BMN picture. An alternative representation for the
same correlator comes from the Berenstein-Maldacena-
Nastase (BMN) [35] picture. In this picture, one beam,
φn2 , describes a reference state, the BMN vacuum, while
the other, φm1 , is viewed as a collection of m magnons
propagating through it. The latter are not the familiar
magnons describing spin waves on top of the (ferromag-
netic) vacuum, but some “mirror” versions of them, map-
ping to insertions along the direction (x1, x2) = (0,∞)
of the reference beam, see fig. 3. Each magnon φ1 is
further decomposed into partial waves with respect to
dilatation and rotation, z = ρeiφ; each carries a rapid-
ity u ∈ R and bound state index a ∈ Z conjugate to
these symmetries. The planar correlator is cut halfway
by the vacuum into two triangles, which are naturally as-
sociated with three-point functions. The amplitudes for
production and absorption of m magnons on the two tri-
angles can be obtained in terms of the so-called hexagon
form factors [4, 36]. The next crucial ingredient is the
rule for rotating each partial wave from a triangle ending
on the reference points (0, 1, ∞) to the reference points
(0, z,∞) [5]. Combining the two yields the wave-function
overlap

µa(u; z) =
|z|m

(z − z̄)m
m∏
i=1

z−iui+
ai
2 z̄−iui−ai2 µai(ui)

m∏
i<j

pij ,

(12)

with (u,a) = {(u1, a1), . . .}, µa(u) = ag2/(u2 + a2

4 )2,
pij = paiaj (ui, uj), pab(u, v) = µa(u)∆ab(u, v)µb(v)/(ab),
and ∆ab(u, v) as defined in eq. (15) below.

Finally, the “scattering” between the magnons and the
vacuum results in a factor (g2/(u2 +a2/4))` per magnon,
where ` is the so-called bridge length. Naively, ` = n,
since there are n vacuum lines to cross. In fact m of
these lines have been pulled out and included in the wave
function (12), as shown in fig. 4 for m = 1. This subtlety
of the cutting explains why the wave function (12) is
suppressed by 2m2 powers of the coupling and why the
bridge length is ` = n − m. For n = 0 (` = −m), the
overlap gives back the tree result, upon integration,∑

a∈Zm

∫
du

m!
µa(u; z)

m∏
i

(u2
i +

a2i
4 )m

g2m
=

|z|m
|1− z|2m , (13)

with |z|/|1 − z|2 =
√
x2

3x
2
4/x

2
34 the scalar propagator in

the conformal frame of fig. 3 (with the numerator absorb-
ing the weights of the field).

Putting everything together, and normalizing by the
disconnected correlator, eq. (13), leads to an integral for
the pure function directly,

Im,n =
∑
a

∫
du

m!

m∏
i=1

aiz
−iui+ai/2z̄−iui−ai/2

(u2
i + a2

i /4)m+n

m∏
i<j

∆ij ,

(14)
with ∆ij = ∆aiaj (ui, uj) and

∆ab(u, v) =

[
(u− v)2 +

(a− b)2

4

][
(u− v)2 +

(a+ b)2

4

]
.

(15)
For m = 1, this is the formula for the one magnon
contribution to the four point function of BPS operators
in planar N = 4 SYM [5].

Analysis. The flux tube and BMN matrix integrals pro-
vide two, in principle equivalent, formulae for the fishnet
diagram. In practice, it is much easier to evaluate the
latter. There are far fewer residues and the answer ap-
pears in closed form almost immediately; the final sum
over the bound state labels is always expressible in terms
of classical polygarithms. The infinite series of ladder in-
tegrals (m = 1) was easily reproduced in this manner [5].
Thanks to the polynomial nature of the magnon interac-
tion, eq. (15), the fishnet diagrams are equally straight-
forward for reasonable values of m,n. We derived the
result (5) through m,n = 1, . . . , 4. We double-checked
the answer against the flux-tube predictions for the few
lowest residues when m = 2. The main structural prop-
erty, embodied in eq. (5), is that the fishnet diagrams are
sums of products of m ladder integrals. This observation
is the seed for the Steinmann bootstrap program.

III. LADDERS, STEINMANN, AND ALL THAT

The ladder function Lp is defined for p > 0 by [17, 20]

Lp =

2p∑
j=p

j! [− ln(zz̄)]2p−j

p!(j − p)!(2p− j)! [Lij(z)− Lij(z̄)], (16)
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FIG. 4. By supersymmetry, the measure µa(u) describes both
the one-loop gluon diagram, on the left, and the one-loop
scalar cross diagram, on the right. To get a free propagator,
we must deconvolute the scalar diagram, by acting with the
box operator 2/g2 = −zz̄∂z∂z̄/g2 or, equivalently, by intro-
ducing the form factor (u2 + a2/4)/g2 in rapidity space. A
similar rule was used [2, 32, 33] to transpose between MHV
and NMHV amplitudes, in the flux tube picture. In gen-
eral, the conversion is achieved through inclusion of a factor
((u2 + a2/4)/g2)m, per excitation, where m is the “NMHV”
degree, or number of scalars at the cusp. This is readily seen
to correct the mismatch between ` and n.

and the tree-level value is L0 = (z− z̄)/[(1−z)(1− z̄)]. In
the neighborhood of the origin in z, the polylogarithms
Lij(z) are analytic, and Lp is manifestly single-valued,
a real analytic funtion of z. That is, Lp has no branch
cuts under rotating z → ze2πi, z̄ → z̄e−2πi. It does
have (multiple) discontinuities in zz̄: under z → zeπi,
z̄ → z̄eπi, the logarithm shifts by ln(zz̄)→ ln(zz̄) + 2πi.

What is not so obvious from the representation (16) is
that Lp is also single-valued in z around z = 1. In fact it
lies in the class of SVHPLs L~w [27],

Lp = (−1)p
[
L0,...,0,1,0,0,...,0 − L0,...,0,0,1,0,...,0

]
, (17)

where there are p − 1 (p) 0’s before the 1 in the first
(second) term, and 2p entries in all.

Now Lp does have a discontinuity in (1 − z)(1 − z̄):
under (1− z)→ (1− z)eπi, (1− z̄)→ (1− z̄)eπi,

Lp → Lp + Disc1Lp , (18)

Disc1Lp = 2πi
(−1)p

p!(p− 1)!
ln(z/z̄) (ln z ln z̄)p−1 . (19)

This discontinuity is compatible with the differential
equation obeyed by Lp [19]:

zz̄∂z∂z̄Lp = −Lp−1 , (20)

zz̄∂z∂z̄Disc1Lp = −Disc1Lp−1 . (21)

Crucially, eq. (18) is only a single discontinuity, due to
the Steinmann relations [12] for the momentum-space in-
terpretation of the integral.

The Steinmann relations forbid a double discontinu-
ity in the overlapping s and t channels of the four-point
amplitude for massive scattering:

DiscsDisctA4 = 0, (22)

where s = x2
12, t = x2

34. Conformal invariance places
s and t both in the denominator of u and v, so the

discontinuities now take place in the common variable
(1− z)(1− z̄) at z = 1, and eq. (22) becomes

Disc1Disc1A4 = 0. (23)

This equation holds for any conformally-invariant Feyn-
man integral with the same kinematics, such as Im,n or
Lp.

1 (Many conformal integrals, e.g. those considered in
ref. [23], don’t have a scattering interpretation, so the
Steinmann relations don’t apply to them.)

Generic products of ladder integrals do not obey the
Steinmann relations, because the single discontinuities in
(1− z)(1− z̄) multiply together to form multiple discon-
tinuities. In special combinations, the multiple disconti-
nuities cancel. For example, in the linear combination

Ln−1Ln+1 + r(Ln)2 , (24)

the z dependence of the double discontinuity in each
term is precisely the same, and the respective normal-
ization factors are [(n + 1)!n!(n − 1)!(n − 2)!]−1 and
[(n!)2((n − 1)!)2]−1. If r = −(n − 1)/(n + 1), then the
double discontinuity cancels between the two terms. This
value of r agrees with the direct computation and gives
the m = 2 result I2,n in eq. (5) (r = −c12c21).

For m = n = 2, the integral I2,2 = L1L3 − 1
3 (L2)2 can

be evaluated using eq. (17). Converting the L~w functions
to a linearized form with shuffle identities, and using the
compressed notation of ref. [22], we obtain

I2,2 = 4[−L3,5 + L5,3 + L2,5,0 − L4,3,0 − L1,5,0,0

+ L3,3,0,0 − L2,3,0,0,0 + L1,3,0,0,0,0] , (25)

a form which agrees with ref. [22].
The cancellation of multiple discontinuities becomes

a very stringent requirement as the number of lad-
ders increases. A particular term always appears
with unit coefficient in the m × n fishnet result:
Ln−m+1Ln−m+3 . . . Ln+m−1. For the square fishnet with
m = n, we write all combinations of m ladders Lpi with
weight 2mn = 2m2, whose maximum index is pmax =
2m − 1. Through m = n = 9, there is a unique solution
to the Steinmann constraints, with 1, 2, 5, 16, 58, 231, . . .
terms for m = 1, 2, 3, . . .. This sequence is the number
of monomials in the expansion of the determinant of the
m ×m Hankel matrix Aij with elements ai+j [40] — a
strong clue to the final formula (5).

1 The position-space interpretation of the single allowed disconti-
nuity is in terms of an extremal process where a twist-2n opera-

tor ∼ φm1 2`φ†m1 , with ` = n−m, is exchanged between the two
beams. (Schematically, the n−m boxes in the operator remove
` = n −m propagators in the bridge, giving rise to an effective
bridge with `′ = 0, which is characteristic of extremal processes.)
Its contribution to the correlator is power-suppressed, appearing
at order |1−z|2n in the expansion of Φm,n around z = z̄ = 1, but
it is logarithmically enhanced because of mixing between single-
and double-trace operators. In the planar limit, one typically
expects a single logarithm from double-trace mixing.
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We promote the m×m solution to an m×n ansatz by
shifting the arguments of all Lp’s in the m×m solution
upward by (n −m), increasing the weight from 2m2 to
2mn, and inserting arbitrary functions of n as coefficients
of these monomials. That is, we assume that there are
the same number of terms in the m × n result as in the
m ×m one, and we assume the unit coefficient in front
of Ln−m+1Ln−m+3 . . . Ln+m−1. Through at least m = 8,
the Steinmann constraints have a unique solution, eq. (5).

We now show that eq. (5) solves the Steinmann con-
straint (23) for any m,n. Notice that the coefficients cij
in eq. (6) and the ladder discontinuities obey very similar
relations, moving along a column of the matrix Mij :

ci+1,j = p(p+ 1) cij , (26)

Disc1Lp+1 = − ln z ln z̄

p(p+ 1)
Disc1Lp , (27)

where p = n −m − 1 + i + j is the index for the ladder
Lp that multiplies cij in Mij . Thus, under eq. (18) every
column in M shifts by an amount proportional to the
transpose of the vector

(1,− ln z ln z̄, [− ln z ln z̄]2, . . . , [− ln z ln z̄]m) . (28)

The double discontinuity in detM can be computed by
summing over all possible pairs of shifted columns; the
determinant of each such term vanishes because the two
columns are proportional. Therefore the double disconti-
nuity — and similarly, all higher discontinuities — vanish
in Im,n. Only the single discontinuity survives.

The Steinmann relations are homogeneous and don’t
fix the result’s overall normalization. We check the nor-
malization recursively in m by observing that eq. (5),
although intended to be used for n ≥ m, also holds for
n = m − 1, with Im,m−1 = L0 Im−1,m. The factor of L0

cancels one inverse factor in eq. (3) for Φm,m−1, so that
Φm,m−1 = Φm−1,m as required for self-consistency.

IV. CONCLUSIONS

In this letter we presented a well-motivated conjecture
for conformal four-point fishnet diagrams in terms of lad-
der integrals. One may be able to test our conjecture
further, by computing the two integrability-based formu-
lae exactly, for any m,n, and proving their equivalence
to eq. (5). Determinantal representations for the inte-
grands, like the one studied in ref. [37], might enable their
exact integration. The conversion between the flux-tube
and BMN pictures might help to find representations of
more general correlators in the separated variables. It
might also shed light on the hidden simplicity of general
flux tube integrals, and bridge the gap to the amplitude
bootstrap program [15, 16, 38, 39].

One could apply similar techniques to related di-
agrams, at the four- and higher-point level. Some
alterations of fishnet graphs, either in the bulk or at the
boundary, might admit a natural interpretation in the
integrability set-up, like ones explored [10] for two-point
functions. Some might echo the magic identities relating
many conformal four-point integrals to one another
and to the ladder integrals [19]. When these integrals
are “glued” together in various ways, are multi-linear
combinations of ladder integrals still obtained? We
expect the combination of integrability and analyticity
to answer that question and lead to many more powerful
results in the future.
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[9] Ö. Gürdoğan and V. Kazakov, Phys. Rev. Lett. 117
(2016) 201602; addendum: Phys. Rev. Lett. 117 (2016)
259903 arXiv:1512.06704 [hep-th]].
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