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The dominant deformation behavior of two-dimensional materials (bending) is primarily governed
by just two parameters: bending rigidity and the Gaussian modulus. These properties also set
the energy scale for various important physical and biological processes such as pore formation,
cell fission and generally, any event accompanied by a topological change. Unlike the bending
rigidity, the Gaussian modulus is however notoriously difficult to evaluate via either experiments or
atomistic simulations. In this work, recognizing that the Gaussian modulus and edge tension play
a non-trivial role in the fluctuations of a 2D material edge, we derive closed-form expressions for
edge fluctuations. Combined with atomistic simulations, we use the developed approach to extract
Gaussian modulus and edge tension at finite temperature for both graphene and various types of
lipid bilayers. Our results possibly provide the first reliable estimate of this elusive property at
finite temperature and appear to suggest that earlier estimates must be revised. In particular, we
show that if previously estimated properties are employed, graphene free edge will exhibit unstable
behavior at room temperature. Remarkably, in the case of graphene, we show that the Gaussian
modulus and edge tension even change sign at finite temperature.

Two-dimensional (2D) materials[1]with thickness
at the atomistic scale are highly flexible and bend
quite easily. This mechanical characteristic, in addi-
tion to other physical and chemical attributes, has
opened up an entirely new field of research in the sci-
ences with tantalizing applications that range from
next-generation electronics, drug delivery, energy
harvesters, to structural composites[2–5]. Graphene
is a prototypical crystalline 2D material and the lipid
bilayer membrane, the key ingredient of a biological
cell, is arguably its counterpart in the soft matter
world. Phenomenologically, the elastic energy cost
to bend an isotropic 2D material can be well de-
scribed by [6]:

Fb =

∫
1

2
κbH

2 + κGK (1)

Here κb and κG are the bending and Gaussian
moduli that, respectively, correspond to the change
in energy due to changes in the mean (H) and
Gaussian (K) curvatures.

Equation (1) has been extensively used to
described the mechanics of both biological and
isotropic crystalline membranes[7]. Bending
modulus is relatively simple to estimate—be it
from atomistic simulations or from experimental
methods[8, 9]. For example, measurement of ther-
mal fluctuations of 2D materials provides a facile
route to estimate the bending modulus [10, 11].
The typical bending modulus (κb) of most 2D
materials is small enough compared to the thermal

FIG. 1: Gaussian modulus and edge properties play
a central role in physical processes that involve

topological changesor deformation of an open edge
e.g. pore formation, structural deformation of a

finite nanoribbon, cell fission and fusion.

energy scale that they undulate noticeably even at
room temperature[11, 12]. For an infinitely large
membrane, the following result for the fluctuations
of the out-of-plane displacement field (h) may be
derived based on the linearized version of Equation
(1): 〈h2〉 ∝ kT/κb[13]. With this expression, either
atomistic computation of the fluctuation spectra, or
experimental measurements, can be used to estimate
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the bending modulus [11, 13]. In sharp contrast,
however, the estimation of the Gaussian modulus
is quite difficult. For example, the aforementioned
thermal fluctuation spectra result is independent of
the Gaussian modulus. This is a consequence of a
more general principle—the so-called Gauss-Bonnet
theorem[14] which states that the integration of the
Gaussian curvature over the surface without edge is
invariant under any deformation that is not involved
with topological transformations. To quote Hu et.
al.[15], this is “both a blessing and a curse”. That
is, we can safely ignore the contribution due to the
Gaussian curvature in several practical situations
unless there is a change in topology. However,
due to this very reason, Gaussian modulus is no-
toriously difficult to measure. To understand this,
it is worthwhile to mention some of the physical
processes where it does matter: pore formation,
structural deformation of a finite ribbon, cellular
uptake of macromolecules, cell fusion and fission
are some examples (Figure 1). However, there are
no clear experimental or simulation procedures
that can readily use these aforementioned events
to estimate this elusive material property. While
most of the experimentally measured values of
Gaussian modulus for lipid membranes are reported
for monolayers[16–22], there are no experimental or
computational estimates of Gaussian modulus for
crystalline membranes at nonzero temperatures.

Despite the attendant complexities of the
endeavor, numerous attempts have been made
to evaluate the Gaussian modulus of biological
membranes[15, 18, 21–23]. We highlight here the
work by Deserno and co-workers [15, 23] who
provide a thoughtful review of the subject and
propose a strategy to estimate this property for
lipid bilayers[24]. Using coarse-grained molecular
dynamics (MD), Hu et. al.[23] monitored the
tendency of a flat finite size-membrane patch to
close and form a vesicle in order to reduce the
total edge energy. A theoretical result is then used
to link this probability to the Gaussian modulus.
Despite the pioneering nature of work by Deserno
and co-workers[15, 23], several issues pertaining to
this approach suggest that another independent
estimate is warranted. The theoretical model by
Deserno and co-workers[15, 23] is a ground-state
model (i.e. zero Kelvin) while simulations are
performed at finite temperature and accordingly
disregard entropic corrections and there is thus an
inconsistency between their atomistic simulations
and the matching theoretical model. The authors
carefully choose very small size membrane patches
to minimize the effect of thermal fluctuations.
Nevertheless, the sensitivity of their results to a
finite temperature correction is not immediately

obvious. Furthermore, since rather small patches
must be used, there is also a likelihood that their
estimates are plagued by size-effects. Even with
a small patch, while surface fluctuations may be
minimized, the edge fluctuations may still be large
(as we will show in this work). Finally, the size of
the patch in simulations is restricted by a range of
edge tension and Gaussian modulus and thus, in
case any of these properties turn out to be beyond
these ranges, the correct estimations cannot be
obtained by the initially imposed patch size.

In the context of graphene, a couple of key works
have recently appeared in the literature.Wei et.
al.[25], using quantum calculations, estimated the
Gaussian modulus at zero Kelvin (∼ −1.52eV ) by
comparing the potential energy of graphene for dif-
ferent topological structures. Davini et. al.[26] used
a rather interesting approach where they derived a
continuum model linked with the 2nd-generation
reactive empirical bond-order (REBO) interatomic
potential[27] to extract the Gaussian modulus at
zero Kelvin and find its value to be around −1.62eV .
These approaches exclude entropic contributions.
As we will show, entropic effects make a decisive
contribution to the physically relevant finite tem-
perature Gaussian modulus and edge properties. In
short, the quest for the true Gaussian modulus still
remains an active research topic.

We propose an entirely different approach from
the ones in the literature and show that monitoring
the thermal fluctuations of the edge of a 2D mate-
rial provides all the requisite information necessary
to determine the elusive Gaussian modulus and
the edge tension. Inspired by an earlier work of
Gommper and Kroll[28], we derive the necessary
theoretical relations and carry out MD simulations
to yield arguably the first reliable finite temperature
estimates of these properties. While our approach
predicts values well within the experimental range,
they are markedly different from past works. In
particular, we show that the currently estimated
values for the Gaussian modulus can lead to physical
inconsistencies at room temperature—e.g. in the
case of graphene, unstable edge behavior will ensue.
An additional key outcome of the work is that our
relations for the edge fluctuations provide a rather
reliable metric to bracket the physically plausible
range of these properties.

Thermal fluctuations of a free edge—
theoretical model. Consider an open finite 2D
elastic membrane, with a smooth and orientable sur-
face Ω, enclosed by a space curve ∂Ω that represents
the edge of the surface. Let ψ and φ be the areal
and lineal energy density, respectively, of the surface
and the edge. Up to quadratic order, ψ is simply the
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integrand of Equation (1). Then the total elastic en-
ergy can be split into two parts as:

F = Fb +

∫
∂Ω

φ. (2)

The edge energy density can be expressed as [29,
30]: φ = φ0 + 1

2κs(κ
2
n + κ2

g) + · · · , where φ0 is the
so-called edge(line) tension. Further, κn, κg are the
normal and geodesic curvatures, respectively and κs
can be defined as the bending modulus of the edge.
Minimization of the total elastic energy then leads
to the ground-state Euler-Lagrange equations (not
shown, see Supplementary Information (SI)-Section
2, Equations (9, 10), which includes Ref. [29]) and
a rather complicated set of boundary conditions on
the free edge [29]:

(L∇SψK −
1

2
∇SψH − 2H∇SψK) · ν + φκn

κ2
n

+ φκg
κnκg − φκn − φ′′κn

= 0 (3a)

1

2
ψH + ψKκn + φκn

κg − φκg
κn = 0, (3b)

and {h = 0,∇Sh · ν = 0} for constrained edges. In
Equation (3), all the subscripts denote derivatives
and the superscript ′′, denotes second derivative with
respect to the arc length of the free edge. Also, L
is the curvature tensor, ∇S denotes surface gradient
operator and ν is the unit vector, normal to the edge
curve and tangent to the surface (see SI-Section 2,
Equations (2, 3), which includes Ref. [29] ).

As usual, the partition function Z is defined as∫
e−F [h]/kTD[h] where D[h] denotes path integra-

tion over all possible functions, h(x), that satisfy
the free boundary conditions in Equation (3) or
the constrained edge conditions. While the sta-
tistical mechanics analysis of thermal fluctuations
is relatively simple for an infinitely large elastic
sheet, the path integral is difficult to evaluate in the
present case due to the rather complicated bound-
ary conditions at the edge. It is therefore worth-
while to briefly touch upon the infinite sheet case
(i.e. periodic boundary conditions) to connect with
the typical practice in the literature. In that sce-
nario, the boundary conditions at the edge vanish
and the displacement correlation in terms of the
Fourier vector q can be calculated analytically to be:

〈h(x)h(x′)〉 =
∑

q
kT eiq·|x−x′|

L2κb|q|4 . This expression has

traditionally been used to extract the bending stiff-
ness of elastic membranes from either experiments
or molecular dynamics simulations[10, 11, 31]. In
the present work, we will derive the displacement
correlation function for a free edge at finite tem-
perature and show that both the Gaussian modu-
lus and edge tension can be obtained from the de-

FIG. 2: We extract the Gaussian modulus and edge
properties from MD simulations for lipid membrane
DPPC by fitting our analytical results. Our fit is

found to be more sensitive to edge tension
compared to the edge moduli and hence the green

dashed line yields a better fit.

rived result[32]. In what follows, we choose a sim-
plified geometry to carry out our analysis. In princi-
ple we can choose any geometry and the main con-
sideration for a particular configuration is the ease
of carrying out the atomistic simulations. Accord-
ingly, we consider a rectangular membrane with a
free edge of size L and a clamped (opposite) edge.
The objective is to study the fluctuation behavior
of the membrane at (and near) the free edge. In
order to make analytical progress, we model this
case with a semi-infinite sheet with one free edge.
The semi-infinite sheet is embedded in the domain
Ω1 := [x = (x, y);−∞ < x < 0,−∞ < y <∞], with
a free edge at ∂Ω1 := [x = (0, y);−∞ < y <∞].
Therefore, we have periodic boundary conditions
only in y direction. The derivation is long and te-
dious however the final result is exceptionally sim-
ple which we quote here and leave it to the reader
to pursue the details in SI-Section 4, Equations (38-
61). At the edge x = x′ = (0, y), the displacement
self-correlation is simply:

〈|h(q)|2〉 =
2kTκb

Lq2 (2κb (φ0 − 2qκG + q2κs)− qκ2
G)
,

(4)

which unlike the infinite membrane case, contains
the contributions from not only the bending modu-
lus κb, but also the Gaussian modulus κG as well as
the edge properties (φ0, κs)[33].

MD simulations of a fluctuating free edge. In
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FIG. 3: Fluctuations of the free edge of graphene
monolayer with size of L = 8.4nm.

order to use the derived fluctuation relations in the
preceding paragraphs, we perform MD simulations
on graphene monolayer and three types of lipid
bilayers. The details of the simulation approach,
force-field used, the manner in which the edge
conditions were imposed and other details are in
SI–Section 5, which includes Refs. [34–39]. For
lipid bilayers, calculations were performed with
the freely available software GROMACS, using
the coarse-grained MARTINI force field[40, 41].
We chose three types of lipid: DPPC, DOPC
and DOPE. We expect different properties for the
three bilayers and since any particular one is fine
for “proof-of-concept”, we focus on the details
of only DPPC. For the others, the results can
be found in the SI-Section 5. We perform MD
simulations of monolayer graphene using LAMMPS
[42]. The second- generation reactive empirical
bond-order (REBO) potential [27] is used for the
multibody C–C interactions. In graphene, unlike
lipid bilayers, the in and out-of-plane deformations
are coupled in a nonlinear fashion. MD simulations
of infinitely large graphene monolayers show that
at finite temperature, depending on the size of the
sheet and the temperature, they exhibit marked
stiffening[11] [43]. To minimize the effects arising
from nonlinearities, we perform MD simulations
under NPT ensemble– zero pressure–to relax the
in-plane stress field. Further details related to
graphene MD simulations are in the SI-Section 6,
which includes Refs.[27, 42, 44].

Results and discussions. We fit our theoretical
expression in Equation (4) to the data from MD
simulations. The details on transforming the MD
data into Fourier space can be found in SI-Section
7. Results are shown in Figure 2 for lipid bilayers.

The fluctuation spectra can be described by a power
law as: 〈|h(q)|2〉 ∝ 1/qη. For long wave-length
fluctuations, the dominant term is the edge tension,
as it couples with q2, while at short wave-length
fluctuations, the edge modulus κs, coupled with
q4 becomes the dominant term. Unfortunately,
there are no reports on the edge modulus of lipid
membranes in the literature. For DPPC lipid
membrane, we obtained the bending modulus
κb = 36kT and the edge tension is estimated
as: φ0 = 14.4kT/nm which is about an order of
magnitude larger than what has been obtained
by Hu et.al.[15]. In the intermediate region, the
Gaussian modulus, determines the decaying trend
of the fluctuations, i.e. the value of η and how fast
the fluctuations decay. Interestingly, the Gaussian
modulus does not have significant impact on the
overall fluctuations, but strongly affects only its
rate of decay with respect to the wave number and
is estimated to be κG = −28.8kT for DPPC lipid
membrane. Our fitted parameters are indeed in the
range of reported data for lipid membranes[16–22],
but slightly different from those reported by Hu
et.al.[15]. We have investigated the properties
for other types of lipids as well (SI–Section 5).
While our estimates on Gaussian modulus and edge
tension for DPPC are in reasonable agreement with
existing values in the literature, reported values
of these properties for DOPC and DOPE in the
literature, cannot explain our MD observations.

The results for the fluctuations of a graphene
edge are shown in Figure 3. Existing values for
graphene mechanical properties in the literature
are reported at zero Kelvin. Due to nonlinearities,
graphene monolayers exhibit stiffening at finite
temperature. Similarly, the Gaussian modulus
and edge properties also get renormalized at finite
temperature. In fact, a free edge, influenced by edge
forces, sustains ground-state non-zero deformations,
that arise from the competition between in-plane
stretching energy and the compressive edge force.
The effect of the in-plane stretching energy can
be implicitly captured by the edge modulus κs as
well as φ0, representing the apparent edge tension.
The variation of edge modulus appears to have
negligible effect on the fitting of the MD results.
Our results show that at finite temperature, the
apparent edge tension—unlike its bare value at zero
Kelvin ∼ −10 eV/nm[45]—is positive with a value
of ∼ 1.2 (eV/nm) and thus provides stability to
the edge. This is in sharp contrast to the negative
edge tension that is believed to exist for graphene
edges. For Gaussian modulus also, we obtained
κG ∼ 1kT ∼ 25meV, which is positive and much
larger than its predicted bare value at zero Kelvin
∼ −1.52 to −1.62 eV [25, 26]. Our results bring
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FIG. 4: This figure show the predictions of edge
fluctuations of graphene if the currently accepted

values of Gaussian modulus[25] and edge
properties[45] in the literature are used. As
evident, our atomistic simulations cannot be

captured by those properties.

to fore that the negative value is not possible at
finite temperature. In fact, we could not get a good
fit with the reported negative values of Gaussian
modulus in the literature. Indeed, the best fit
is obtained with rather small, positive value for
Gaussian modulus. The discrepancies between the
zero and finite temperature Gaussian modulus and
edge tension clearly reveal that entropic effects are
significant. Even if we were to use the currently
accepted properties, they would be incapable of
explaining our simulations of the edge fluctuations
(Figure 4) and in fact demonstrate unphysical
instability at finite temperature. The red dashed
line in Figure 4 is obtained by substituting the
zero-Kelvin values into Equation (4). Note that
the zero-Kelvin negative values of edge tension and
Gaussian modulus, result is a singular point q?

where the denominator of Equation (4) becomes
zero. For all values of q < q? the correlation
function become negative, which is an indicator
of the instability of thermal fluctuations for long
wave-lengths.

While not practical for lipid bilayers, at least
in the context of graphene, it is of interest to
investigate whether the Gaussian modulus does
show a transition towards negative values as the
temperature is lowered. As alluded to earlier, two
notable (and congruent) estimates exist for the zero
Kelvin value [25, 26]. Accordingly, we have also
explored the temperature dependency of the Gaus-
sian modulus and edge properties. The detailed
results appear in the SI-Section 8. Our simulations
suggest that as the temperature decreases below
room temperature, these properties approach their
zero Kelvin values and in particular, the Gaussian
modulus does transition to a negative value. We
remark that (as discussed in the SI-Section 8)
our approach has limitations in that it cannot be
used (in its present form) at ultra-low or very
high temperatures. Future work extending our
framework to incorporate stretch-bending coupling
may partially mitigate this limitation.

In summary, our work provides a new and
facile route–for the first time—to extract the edge
properties and Gaussian modulus for both fluid
and solid 2D membranes from fluctuations spectra.
The obtained insights lay bare some of physical
inconsistencies and paradoxes in the currently
accepted mechanical properties for lipid bilayers
and graphene.
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