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Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have
revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality
of the sample. To explain this surprising behavior, we propose a novel symmetry-breaking defect-
assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons,
which drastically accelerate the carrier scattering time in low-quality samples. The gained insights
provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders
of magnitude.

In graphene, the impact of momentum-conserving
acoustic phonon processes on relaxation of non-
equilibrium electronic excitations is limited by the low
sound velocity, restricting the maximum energy trans-
fer per scattering event [1]. Conversely, defect-assisted
electron-phonon scattering events, so called supercolli-
sions, can have a profound impact on the relaxation time
by removing the in-plane momentum conservation, since
the excess momentum can be absorbed by defects [1–7].
For graphene in a magnetic field, the situation is drasti-
cally changed since the in-plane translation symmetry is
broken with the consequence that the electron momen-
tum is no longer a conserved quantity, suggesting that
supercollisions are not important in Landau-quantized
graphene.

In the light of this, the experimental results for elec-
tron relaxation times between graphene Landau levels in
this letter are very surprising, since they clearly show a
strong dependence of the relaxation time on the quality
of the sample. To explain these findings, we propose
a novel mechanism for defect-assisted electron-phonon
scattering breaking the mirror symmetry of the graphene
plane. By defect we refer to local perturbations intro-
ducing additional scattering channels and breaking the
mirror symmetry. Such defects could e.g. be local electric
field gradients, interstitials, or bucklings of the graphene
plane induced by a substrate roughness or by vacancies
[8, 9]. In general, the symmetry with respect to a mir-
ror plane lying in the graphene plane prevents the lin-
ear coupling of charge carriers and out-of-plane phonons
(also known as flexural phonons) in a perfect sample
[10, 11]. The removal of the mirror symmetry by defects
turns out to be crucial in Landau-quantized graphene,
where carrier-phonon scattering is governed by resonances
between inter-Landau level transitions and correspond-
ing phonon energies [12, 13]. While the in-plane optical

Figure 1. Sketch of (a) carrier-phonon and (b) defect-assisted
carrier-phonon scattering channels governing the relaxation in
high and low quality samples, respectively. Three broadened
Landau levels (LLs) are shown with the Dirac cone in the
background. Charge carriers are excited with left circularly
polarized radiation (yellow arrows) and relax via scattering
with phonons. Feynman diagrams of the scattering processes
illustrate the difference between (a) a high quality sample
where usual carrier-phonon scattering involving the modes
ΓTO, KTO, ΓLO, KLO takes place (green arrows), and (b)
a low quality sample where the simultaneous scattering of
charge carriers with defects and phonons enable the relaxation
via out-of-plane phonons of the mode ΓZO (purple arrows).

phonon energies of graphene range from 150 to 200meV,
the out-of-plane phonon at the Γ point (the ΓZO mode) –
activated by defect-electron interaction – has an energy
of 100meV [14–16]. For a sufficiently large Landau level
(LL) broadening, supercollisions with ΓZO phonons allow
transitions between the three energetically lowest levels
LL±1 and LL0 at reasonable magnetic fields.

The sketches in Figure 1 compare the ordinary carrier-
phonon scattering with the defect-assisted carrier-phonon
scattering in two samples with different qualities, where
the quality is defined by the concentration of defects
breaking the mirror symmetry of the graphene plane.
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Figure 2. Direct comparison of the carrier relaxation times
seen in differential transmission spectra (DTS) of (a) a high
quality and (b) a low quality sample in experiment and theory,
respectively. This demonstrates that the relaxation time is
two orders of magnitude faster in the low quality sample.
The yellow area in the background illustrates the width of
the pump pulse. The orange signatures show exponential
functions fitting the experimental data, and the gray area in
the experimental signal indicates secondary peaks appearing
due to reflections of the pump pulse which are omitted in our
analysis. Experimental DTS for the high quality sample is
shown for a longer time range up to 1 ps in the Supplemental
Material.

The investigated situation is very similar in both cases:
The system is excited using σ−-polarized radiation that
is in resonance with the transition LL0 → LL+1, and it
develops back to equilibrium via the emission of phonons.
While ordinary carrier-phonon scattering (LO/TO) is
possible in the high and in the low quality sample, the
relaxation in the low quality sample is governed by super-
collisions allowing the emission of out-of-plane phonons
(ΓZO). The latter phonons have a smaller energy that
approximately fits the inter-LL distance of the experi-
ments discussed below. Therefore the relaxation occurs
on a picosecond timescale (τ ∼ 10 ps) as opposed to a
nanosecond timescale (τ ∼ 1 ns) in case of a high quality
sample.
We present a theoretical study supported by exper-

imental observations. Degenerate pump-probe experi-
ments were carried out on two different multilayer epi-
taxial graphene samples. To this end, mid-infrared radi-
ation from a free-electron laser (photon energy 75 meV,
pulse duration 2.7 ps, pump fluence 0.1µJ/cm2) of σ−-
polarization was employed for both pumping and prob-
ing. The samples were kept at 10 K in a magnetic field
of 4.2 T perpendicular to the graphene layers. At this
field, both pump and probe beam were resonant with
the LL0 → LL+1 transition in the samples. A mercury-
cadmium-telluride detector cooled by liquid nitrogen was
used for low-noise detection. The two multilayer epi-
taxial graphene samples were grown by the same tech-

nique, namely thermal decomposition of the C-face of
semi-insulating 4H-SiC by the confinement controlled
sublimation (CCS) method [17], however under slightly
different growth conditions. One sample, in the following
named “low quality sample” has a low structural quality
compared to standard CCS grown epitaxial multilayer
graphene. The other one, in the following named “high
quality sample” features an extraordinary structural qual-
ity with no D-peak in the Raman spectrum [18]. Details
on the growth, characterization by Raman spectroscopy
and doping of the sample, further pump probe data with
and without a magnetic field, details of the theory, and a
discussion of the phonon spectrum in multilayer graphene
can be found in the Supplemental Material [19].
The applied many-particle theory is based on an ex-

pansion of the graphene Bloch equations [20–22] by out-
of-plane symmetry-breaking electron-defect interactions.
It reproduces well the surprising experimental behavior,
where decay times in two samples differ by more than
two orders of magnitude, cf. Fig. 2. For the theoret-
ical modeling a pump fluence of εpf = 1 · 10−2µJ/cm2,
and an defect-assisted level broadening of Γde = 0.1meV
(Γde = 10meV) is used for the high quality sample (low
quality sample). In accordance with Ref. [23], the doping
is set to µ = 10 meV in the high quality case, while a value
of µ = 28 meV is used in the low quality case as indicated
by Ref. [24]. Before the relaxation processes dominate,
i.e. during the excitation pulse, peaks in the transmission
featuring very fast decay times occur. They result from
the optical excitation as well as Auger scattering. Since
those have already been discussed in Ref. [24], we focus
on the slower relaxation in this work. While the high
quality sample exhibits a very slow relaxation time of
about τ ∼ 1 ns, the relaxation is much faster in case of
the low quality sample reaching times in the range of
τ ∼ 10 ps.

The explanation for the strong dependence of the relax-
ation time on the sample quality is two-fold: First, as was
already mentioned above, the carrier-phonon relaxation
rate in Landau-quantized graphene is determined by a
resonance condition of phonon energy and the energy of
the inter-LL transition. If both energies coincide for a
specific inter-LL transition, carrier-phonon scattering is
efficient between the two involved LLs. Second, the exact
resonance condition is weakened by a finite broadening
that is given by the dephasing of Landau transitions which
also determines the LL broadening [25]. Therefore, off-
resonant scattering is possible and its efficiency increases
with the broadening of the Landau levels. Consequently,
the relaxation is faster in low quality samples where the
Landau level broadening is larger. The resonance condi-
tion is determined by the magnetic field, responsible for
the formation of Landau-states. For the LL-transition
in a range of 100 meV, investigated here, only flexural
phonons (ΓZO) provide a fitting energy channel. However,
the corresponding electron-phonon scattering is symmetry
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forbidden in pure graphene [10]. Here, we propose that
this relaxation channel is activated in low quality samples
of Landau-quantized graphene by enabling carrier-flexural
phonon (ΓZO) scattering due to defect-assisted electron-
phonon scattering. Only if both factors (a sufficient LL-
broadening and the activation of flexural phonons) are
taken into account, the experimentally observed depen-
dence of the relaxation time on the quality of the sample
can be explained.
We proceed to set forth the details of the the-

ory of symmetry-breaking supercollisions in Landau-
quantized graphene to explain the microscopic back-
ground of the observed surprising sample-dependent re-
laxation behavior. The defect-assisted carrier-phonon
scattering is described by the Hamiltonian H =
H0 + Hel-de + Hel-ph, consisting of a free energy part
H0 =

∑
i εia

†
iai +

∑
p,µ εµqph

(
b†µqphbµqph + 1/2

)
and

two perturbations stemming from disorder Hel-de =∑
i,f Di,fa

†
fai and the electron-phonon coupling Hel-ph =∑

i,f

∑
µqph

g
µ,qph
i,f a†fai

(
bµ,qph + b†µ,−qph

)
. Here, and in

the remainder of this article, the electronic states are
specified by a compound index i comprising the spin
si = ±1, valley ξi = ±1, band λi = ±1, Landau
level index ni = 0, 1, 2, . . ., and the quantum number
mi = 0, 1, 2, . . . NB − 1 giving rise to the large LL de-
generacy NB = AeB/(2π~) that scales linearly with the
area of graphene A, the elementary charge e and the
magnetic field strength B. Neglecting the Zeeman ef-
fect and the spin-orbit interaction, both of which are
small as compared to the level broadening in graphene
[26], the low-energetic Landau level spectrum is given
by εi = λivF

√
2ni~eB, with the Fermi velocity [27]

vF ≈ 1 nm/fs. Furthermore, optical phonons are char-
acterized by their mode µ, momentum ~qph and energy
εµqph ≈ εµ, and the matrix elementsDi,f and gµ,qph

i,f deter-
mine the probabilities of the transition from the initial to
the final electronic states |i〉 → |f〉 due to electron-defect
and electron-phonon scattering, respectively.

Starting from the Hamiltonian above, the supercollision
matrix element is obtained by a multiple scattering ex-
pansion [28] to the lowest necessary order in the LL-basis
(Fig. 1b, inset)

g̃i,f = 〈f |
[
Hel-deG

†
0(εf )Hel-ph +Hel-phG0(εi)Hel-de

]
|i〉.
(1)

Introducing a finite broadening Γ, the free electron Green’s
function reads G0(E) = (E −H0 + iΓ)−1, which yields
the supercollision matrix element

g̃
µ,qph
i,f

∣∣∣em/ab
'
∑
v

[
g
µ,∓qph
i,v

1
εi − εv ∓ εµ,qph + iΓDv,f

+Di,v
1

εi − εv + iΓg
µ,∓qph
v,f

]
, (2)

for the emission (−) and absorption (+) of the phonon
(µ,qph). In the regime of well-separated Landau levels,
we set Di,f → Di,fδλi,λf

δni,nf
, so that the denominator

of the second term in Eq. (2) reduces to iΓ. In a self-
consistent Born-Markov approximation, the parameter
Γ is identified by the quantum mechanical dephasing
Γi,f which determines the LL-broadening [25] and will be
explained below. The discussion of the pure LL-defect
and the pure LL-phonon interaction can be found in the
Supplemental Material.
Using the supercollision matrix element from Eq. 2,

we calculate the transition probability for the emission
and absorption of phonons using the generalized Fermi’s
golden rule [29]

Wi,f = 2π
~
∑
µ,qph

∣∣∣g̃µ,qph
i,f

∣∣∣2 (3)

[
(nµ + 1)LΓif

(
4Eem

i,f,µ

)
+ nµLΓif

(
4Eab

i,f,µ

)]
,

with the energy differences 4Eem/ab
i,f,µ = εi − εf ∓ εµ for

the emission (−) and absorption (+) of a phonon, the
Bose distribution nµ, and the Lorentzian LΓ (∆E) =
Γ/
(
π
(
∆E2 + Γ2)) expressing energy conservation. Then,

the carrier dynamics becomes accessible via the graphene
Bloch equations [20, 22]

ρ̇i =
∑
j

[Wj,iρj (1− ρi)−Wi,jρi (1− ρj)] , (4)

ṗi,f = −Γi,f
~
pi,f , (5)

for the occupation probability ρi(t) = 〈a†iai〉(t) and
the microscopic polarization pi,f (t) = 〈a†fai〉(t), where
Eq. 4 is equivalent to the Boltzmann equation. The
electron-light, electron-electron and ordinary electron-
phonon interactions are omitted for reasons of clarity.
Their contribution to the carrier dynamics is taken into
account in the numerical evaluation, but it has been ex-
plained elsewhere [22, 24, 30]. The total dephasing rate
Γi,f = Γde

i,f+Γel-el
i,f +Γel-ph

i,f +Γel-de-ph
i,f determines the broad-

ening of the LLs and is composed of the defect-induced
dephasing Γde

i,f , and the dephasing contributions due to
the different many-particle scattering channels. For de-
tails about Γde

i,f , Γel-el
i,f and Γel-ph

i,f we refer to Ref. [25].
The dephasing induced by supercollisions is given by

Γel-de-ph
i,f =

∑
j

[(Wj,i +Wj,f ) ρj + (Wi,j +Wf,j) (1− ρj)] .

(6)
Note that the scattering rates given by Eq. 3 depend
on the total dephasing Γi,f which is needed to calculate
the dephasing due to supercollisions. Therefore, the total
dephasing is calculated self-consistently in every time step
of the numerical evaluation of the Bloch equations (Eqs.
4-5) [31].
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Figure 3. Scattering rates induced by different phonon modes
in dependence of the inter-LL transition energy showing clear
electron-phonon resonance peaks for (a) the high quality
(Γde = 0.1meV) and (b) the low quality sample (Γde = 10meV).
At a magnetic field of B = 4.2 T (used in the experiments),
the relevant inter-LL spacings are 75 meV (dotted vertical
lines). The insets show that in this energy range defect-assisted
electron-ΓZO-phonon scattering (de-ΓZO) clearly dominates
in the low quality sample, while it is negligible in the high
quality sample.

Before we examine the numerical results in more de-
tail, we investigate how the scattering rates scale with
the defect-induced dephasing. In case of highly off-
resonant electron-phonon scattering (Γi,f � ∆E), the
absolute square of the supercollision matrix element (Eq.
2) scales like |g̃µ,qph

i,f |2 ∝ Γ2
de/Γ2

i,f , the Lorentzians in
the scattering rate (Eq. 3) can be approximated as
πLΓi,f

(∆E) ' Γi,f/∆E2, and the scattering rate hence
scales like Wi,f ∝ Γ2

de/Γi,j . Moreover, in this off-resonant
regime, the self-consistently determined dephasing Γi,f is
generally of the same order of magnitude as the defect-
induced dephasing Γde

i,f , which yields an effective linear
scaling of Wi,f with Γde

i,f . Consequently, to approximate
the scattering rate WLL+1→LL0 for supercollisions as well
as the other relevant electron-phonon scattering channels,
we set Γi,f → Γde

i,f . The result is shown in Fig. 3 and
demonstrates that normal electron-phonon scattering is
suppressed mainly due to the high optical phonon energies,
and likewise the smaller energy of the ΓZO-mode explains
its importance for the relaxation in Landau-quantized
graphene. In the regime of well-separated Landau levels,
on the other hand, the energy of acoustic phonons is too
small to have an impact on the carrier dynamics, cf. Ref
[22]. Furthermore, Fig. 3 shows that, in the high qual-
ity sample, the supercollisions are strongly suppressed
in the relevant (off-resonant) energy range, cf. inset of
Fig. 3a, since the off-resonance enters not only through
the Lorentzian broadening in Eq. 3 (like in the case of
ordinary electron-phonon scattering) but also through
the energy differences in the supercollision matrix ele-
ment (Eq. 2). In the low quality sample, on the other
hand, the total dephasing is so large that the relevant
energy lies within the broadened resonance peak of the
supercollisions (purple line in Fig. 3b), which is thus the
dominant relaxation channel in this case. Therefore, the

Figure 4. (a) Relaxation time as a function of the defect-
induced dephasing for different dopings µ. The dashed vertical
lines mark the values of the defect-induced dephasing that
were used to model the high quality (Γde = 0.1meV) and the
low quality (Γde = 10meV) samples. (b) Initial occupation
probability of LL0 in dependence of the doping of the sample,
and effective doping for a magnetic field of B = 4.2 T assuming
that the carrier density does not change when the magnetic
field is turned on. The dashed vertical lines mark the values
of the doping that are used in (a).

sample quality determining the total dephasing (via Γde
i,f ),

critically influences the relaxation. This is the key to
understand the drastic difference in the relaxation times
of the two experimentally investigated graphene samples,
cf. Fig. 2. Note that the peak heights in Fig. 3 are not
to be trusted, since the scattering rates shown in Fig. 3
are only valid in the off-resonant regime (Γi,f � ∆E).
The dependence of the relaxation time on the defect-

induced dephasing, which is a measure for the sample qual-
ity, is shown in Fig. 4 (a) for different values of the doping.
It shows a very slow relaxation for samples with zero dis-
order τ ∼ 10 ns which becomes about three orders of mag-
nitude faster as the disorder concentration is increased.
The very strong decrease of τ for vanishing defect-induced
dephasings Γde < 0.1 meV occurs due to the fact, that in
this case the defect-induced dephasing is no longer the
dominant contribution to the total dephasing Γ. Instead,
in the regime Γde � Γ, the total dephasing is essentially
determined by electron-electron scattering that does not
change the occupations – known as pure-dephasing –,
but constitutes a scattering channel which competes with
relaxation channels (like electron-phonon scattering and
supercollisions). Furthermore, we observe that the relax-
ation time depends on the doping of the sample, since
this determines the initial occupations and therewith the
Pauli blocking, cf. the occupations in Eq. 4. Consid-
ering solely the transition LL+1 → LL0, Eq. 4 reads
ρ̇+1 = −W+1→0ρ+1 (1− ρ0), which – assuming a con-
stant ρ0 – yields an exponential decay ρ+1 = exp(−t/τ)
with the relaxation time τ = 1/(W+1→0(1 − ρ0)). This
illustrates that τ can become very large for a nearly com-
pletely filled LL0. To understand the minimal change of
the relaxation time for dopings below ∼ 28meV and the
marked change for higher dopings, we take a look at the
initial value of the occupation ρ0 in dependence of the
doping of the sample, cf. black line in Fig. 4 (b), resulting
from a Fermi distribution for an effective doping (purple
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line). The effective doping µeffective for a magnetic field
of B = 4.2 T is calculated from the doping in the absence
of a field µreal using the criterion that the carrier density
does not change when the magnetic field is switched on,
cf. Ref. [24]. The observation that LL0 is far from be-
ing completely filled for low dopings, while it is almost
filled for dopings higher than µreal ∼ 40meV, explains the
doping dependence of the relaxation time.

Finally, we compare the obtained results to magneto-
transport experiments from Refs. 32 and 33, where the
temperature dependence of energy loss rates in a vari-
ety of Landau-quantized graphene samples was measured.
The results are in agreement with ordinary supercollisions
involving acoustic phonons, and the high-field energy
loss rates are only about 40 % smaller in comparison to
the zero-field case. This seems to contradict our results
but in fact it is consistent with our interpretation. The
samples used in the aforementioned magnetotransport ex-
periments are single layer graphene samples with a finite
doping, where the Fermi energy lies at the 8th Landau
level or higher. Therefore, according to the findings of
Ref. 34, the experiments are performed in a regime where
the Landau levels are not well separated, i.e. adjacent
Landau levels overlap. Consequently, scattering with low
energetic acoustic phonons and ordinary supercollisions
have a profound impact on the relaxation dynamics, but
supercollisions do no dramatically change the carrier dy-
namics. On the other hand, the present paper studies one
particular inter-Landau level transition (LL0 → LL+1),
where an energy gap of a few tens of meV efficiently su-
presses acoustic phonon scattering (too low energy) and
also in-plane optical phonon scattering (too high energy).
Here, the activation of the ΓZO phonon mode having an
intermediate energy can lead to a dramatically different
relaxation dynamics.

In summary, the relaxation time in Landau-quantized
graphene shows a very distinct dependence on the sam-
ple quality. This is explained by a novel defect-assisted
electron-phonon scattering channel, in which disorder
breaks the mirror symmetry of graphene. These findings
demonstrate that varying the amount of disorder can be
used to tailor the relaxation time in this system over
several orders of magnitude.
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