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We compute the orbital angular momentum Lz of an s-wave paired superfluid in the presence
of an axisymmetric multiply quantized vortex. For vortices with winding number |k| > 1, we find
that in the weak-pairing BCS regime Lz is significantly reduced from its value ~Nk/2 in the BEC
regime, where N is the total number of fermions. This deviation results from the presence of unpaired
fermions in the BCS ground state, which arise as a consequence of spectral flow along the vortex
sub-gap states. We support our results analytically and numerically by solving the Bogoliubov-de-
Gennes equations within the weak-pairing BCS regime.

Quantized vortices are a hallmark of superfluids (SFs)
and superconductors. These topological defects form in
response to external rotation or magnetic field and play a
key role in understanding a broad spectrum of phenom-
ena, such as the Berezinskii-Kosterlitz-Thouless transi-
tion in two-dimensional (2D) SFs [1, 2], superconduc-
tor/insulator transitions [3–5], turbulence [6], and dis-
sipation [7, 8]. In fermionic s-wave paired states, the
structure of the ground state and low lying excitations of
an axisymmetric singly quantized vortex has been estab-
lished through analytical and numerical studies in both
the strong-pairing regime (where the SF phase is under-
stood as a Bose-Einstein condensate (BEC) of bosonic
molecules) and in the weak-pairing Bardeen Cooper
Schrieffer (BCS) regime. In the BEC regime, the mi-
croscopic Gross-Pitaevskii equation provides a reliable
framework [9, 10], while in the BCS regime the (self-
consistent) Bogoliubov-deGennes (BdG) theory is key in
identifying the structure of the ground state [11, 12] and
the spectrum of sub-gap fermionic excitations [13].

Multiply quantized vortices (MQVs) have however not
received much attention. Generically in a homogeneous
bulk system, the logarithmic repulsion between vortices,
which scales as the square of the vortex winding num-
ber k, energetically favors an instability of a multiply
quantized vortex into separated elementary unit vor-
tices [14]. However, MQVs are of interest since under
certain circumstances, the interaction between vortices
is not purely repulsive and can support multi-vortex
bound states, at least as metastable defects. This can
happen, for instance, in type-II mesoscopic superconduc-
tors, where MQVs have been predicted [15] and exper-
imentally observed [16–19]. In addition, it has been ar-
gued that MQVs are expected to be energetically stable
in multicomponent superconductors [20, 21] and in chi-
ral p-wave superconductors [22, 23]. In fermionic SFs, a
doubly quantized vortex was predicted [24] and observed
in 3He-A [25]. It has further been argued that fast ro-
tating Fermi gases trapped in an anharmonic potential
will support an MQV state [26–28]. Similar vortex states

have been created in rotating BEC experiments [29–32].

Surprisingly, as we demonstrate in this Letter, there
is a fundamental difference between a singly quantized
vortex (|k| = 1) and an MQV (|k| > 1) in a weakly-
paired fermionic s-wave SF. This difference is manifested
most clearly in the orbital angular momentum (OAM)
Lz, as illustrated in Fig. 1. At zero temperature in the
BEC regime, a microscopic Gross-Pitaevskii calculation
predicts Lz = ~Nk/2, where N is the total number of
fermions. Intuitively, this corresponds to a simple picture
where an MQV induces a quantized OAM k per molecule.
For an elementary vortex, this result also holds in the
BCS regime, as confirmed within the self-consistent BdG
framework [11, 12]. As we show in this Letter, for vor-
tices with |k| > 1 however, the BCS ground state con-
tains unpaired fermions which carry OAM opposite to
that carried by the Cooper pairs, thereby significantly
reducing the total Lz from its BEC value by an amount

FIG. 1: Summary of main result: a) For an elementary
vortex (k = 1), the fermionic spectrum has a vanishing
spectral asymmetry and thus all fermions are paired in the
ground state, resulting in Lz = ~N/2 in the BCS regime. b)
In stark contrast, for an MQV (k = 2 pictured here as an
example) mid-gap states confined to the vortex core induce
a non-trivial spectral asymmetry, which leads to unpaired
fermions in the ground state. These reduce Lz from its näıve
value ~N by an amount that scales quadratically with the
splitting between the red branches.
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∼ (kF ξ)
2, where kF is the Fermi momentum and ξ the

coherence length. While the proportionality constant is
non-universal and depends on the vortex core structure,
the scaling with kF and ξ is robust, being independent
of any boundary effects.

To derive our main result we consider a 2D[33]
s-wave paired SF in the weak-pairing BCS regime
at zero temperature within the BdG framework.
The mean-field Hamiltonian in the presence of
an axisymmetric MQV with winding number
k is Ĥ =

∫
d2rΨ†

(
−∇2/2 + V (r)− µ

)
τ3Ψ +∫

d2rΨ†∆(r)
(
eikϕτ+ + e−ikϕτ−

)
Ψ, where the Nambu

spinor Ψ = (ψ↑, ψ
†
↓)
T satisfies {Ψi(r),Ψ†j(r

′)} =
δijδ(r− r′). Here, τi are Pauli matrices, τ± = (τ1±iτ2)/2,
~ and the elementary fermion mass are set to unity, and
µ is the chemical potential. In principle, ∆(r) should be
determined self-consistently but since our results depend
only weakly on its form, we use a fixed pairing term
that for our numerical analysis is taken to be ∆(r) =
∆0 tanh (r/ξ), where ξ = kF /∆0 and ∆0 is the BCS gap.

Due to the pairing term, neither the total parti-
cle number N̂ =

∫
d2rΨ†τ3Ψ nor the OAM L̂z =∫

d2rΨ† (−i∂ϕ) Ψ commutes with Ĥ, and so neither are
separately conserved. Instead, as pointed out in [34, 35],

the generalized OAM operator L̂ = L̂z − kN̂/2 gener-
ates a symmetry and thus, the BdG ground state and all
quasi-particle excitations carry a sharp L̂ quantum num-
ber. More generally, in a chiral SF with pairing symmetry
∼ (px + ipy)ν and with an MQV, the conserved operator

is L̂z − (k+ ν)N̂/2 (see [36]). While the OAM of vortex-
free chiral paired SFs (k = 0) was analysed in [37–39],
here we focus on s-wave SFs (ν = 0) with MQVs, noting
that our results readily generalize to chiral states with
MQVs.

Physically, L̂ measures the deviation of OAM in the
BCS ground state from its expectation value LBEC

z =
kN/2 in the BEC regime (with N =< N̂ >). The sup-
pression of Lz in the BCS regime will hence be reflected in
the eigenvalue L of L̂ , evaluated in the ground state of
the BdG Hamiltonian. We consider a disc geometry with
Dirichlet boundary conditions, i.e., V (r < R) = 0 and
V (r > R) = ∞. Expanding the fermionic operators in a
single particle basis as ψσ(r) =

∑
n,l anlσΦnl(r) where

Φnl satisfies
[
−∇2/2 + V (r)− µ

]
Φnl(r) = εnlΦnl(r),

the Hamiltonian becomes

Ĥ =
∑
l

n,n′

(
a†n,l+k↑
an,−l↓

)T (
εn,l+kδn,n′ ∆

(l)
n,n′

∆
(l)∗
n,n′ −εn,−lδn,n′

)(
an′,l+k↑
a†n′,−l↓

)
(1)

with ∆
(l)
n,n′ =

∫
d2rΦ∗n,l+k∆(r)eikϕΦ∗n′,−l and where n, l

are the radial and angular momentum quantum numbers
respectively. Denoting the single-particle Hamiltonian
matrix asH(l), particle-hole (PH) symmetry connects the
different l-sectors through H(l)∗ = −CH(−l−k)C−1 and

the spectrum is hence PH symmetric about l = −k/2.

The ground state of the BdG Hamiltonian is con-
structed using a generalized Bogoliubov transforma-
tion [40, 41] whose main steps we present here (see [36]
for details). First, we regularize the BdG Hamiltonian
H(l) by introducing a cutoff M � 1 on n, n′. Generically,
H(l) will have a different number of positive and negative

eigenvalues, M
(l)
+ and M

(l)
− respectively. The (unitary)

Bogoliubov transformation is then written as(
b
(l)
m

d
(l)†
m̄

)
=

M∑
n=1

(
S

(l)
1,mn S

(l)
2,mn

S
(l)
3,m̄n S

(l)
4,m̄n

)(
an,l+k↑
a†n,−l↓

)
, (2)

where m = 1, . . .M
(l)
+ , m̄ = 1, . . .M

(l)
− , and M

(l)
+ +M

(l)
− =

2M . The Bogoliubov operator b
(l)
m annihilates a quasi-

particle with positive energy E
(l)
m , L -charge [42] l+ k/2,

and spin ↑. Alternatively, by PH symmetry we can inter-
pret it as the creation operator for a spin ↓ state with neg-

ative energy −E(l)
m and L -charge −l − k/2. In addition,

we introduce the operator d
(l)
m̄ that creates a spin ↑ state

with negative energy E
(l)

M
(l)
+ +m̄

and L -charge l + k/2.

In terms of these operators, the ground state |BCS〉 ∼
⊗l |BCS〉l is defined as the vacuum for all positive en-

ergy quasi-particles and thus satisfies b
(l)
m |BCS〉 = 0

and d
(l)
m̄ |BCS〉 = 0. For systems with M

(l)
+ = M

(l)
− , the

ground state |BCS〉 closely resembles a Fermi sea with
all negative energy states occupied

|BCS〉 ∼ ⊗l
M∏
m=1

b(l)m

M∏
m̄=1

d
(l)
m̄ |0〉 , (3)

where |0〉 is the Fock vacuum for an,lσ. This ground state
can be understood in terms of Cooper pairs, where spin
↑ quasi-particles with L -charge v = l + k/2 (created by
d(l)) are paired with quasi-particles of the opposite spin
↓ and with the opposite L -charge −v (created by b(l)).
Re-expressing the quasi-particle operators in terms of el-
ementary fermions, we find a familiar exponential form,

|BCS〉l = exp
(
a†n,l+k↑K

(l)
n,n′a

†
n′,−l↓

)
|0〉, where K(l) is an

M ×M matrix derived in [36] and the sum over n, n′ is
implicit. Since b(l) and d(l) carry opposite L -charge, the
ground state Eq. (3) has a vanishing L eigenvalue.

When M
(l)
+ 6= M

(l)
− however, the ground state is no

longer given by Eq. (3) since there will exist an im-
balance between the number of quasi-particles with L -
charge l + k/2 and with L -charge −l − k/2. This mis-
match is quantified by the spectral asymmetry of the en-

ergy spectrum ηl =
∑
m sgn(E

(l)
m ) = M

(l)
+ −M

(l)
− , where

{E(l)
m }m∈N are the eigenvalues of H(l). In order to demon-

strate that the presence of a non-trivial ηl leads to un-
paired fermions in the ground state, we perform a judi-
ciously chosen unitary rotation on an,lσ to a new basis
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of fermions ãj,lσ via a conventional (non-Bogoliubov) ro-
tation which does not mix creation and annihilation op-
erators (see [36]). Through a separate unitary rotation,
we simultaneously transform the Bogoliubov operators
b(l), d(l) into a new basis b̃(l), d̃(l). The new fermions ã
and Bogoliubov quasi-particles b̃, d̃ are related through
a Bogoliubov transformation which, as always, takes the
schematic form b̃ = Uã + V ã†, where the matrix-valued
coefficients U, V satisfy |U |2 + |V |2 = 1. Following [41],
we find that the preceding transformations naturally dis-
tinguish between operators for which either U vanishes
exactly: U = 0, V = 1 (occupied levels), or V vanishes
exactly: V = 0, U 6= 0 (empty levels), with the remain-
ing operators, for which both U, V 6= 0, describing paired
levels. In the new basis, the ground state is superficially
similar to Eq. (3) since it can be expressed as

|BCS〉 ∼ ⊗l
∏′

m

b̃(l)m
∏′

m̄

d̃
(l)
m̄ |0〉 . (4)

Importantly however, the restricted products here run
only over paired and occupied levels. Bogoliubov opera-
tors b̃, d̃ for empty states, which are linear super-positions
of ã’s, annihilate the bare vacuum |0〉 and are thus disal-
lowed in Eq. (4). Conversely, occupied states contribute
to Eq. (4) but since these states create unitarily rotated
fermions with certainty, b̃, d̃ ∼ ã†, they do not participate
in pairing. The expression (4) is in turn equivalent to [36]

|BCS〉l =

M
(l)
↑∏

i=1

ã†i,l+k↑


M

(l)
↓∏

i=1

ã†i,−l↓


× exp

 M∑
j>M

(l)
↑

M∑
j′>M

(l)
↓

ã†j,l+k↑K
(l)
j,j′ ã

†
j′,−l↓

 |0〉 ,
(5)

where M
(l)
↓ and M

(l)
↑ are the number of occupied (and

also empty) b̃
(l)
m and d̃

(l)
m̄ levels respectively. In terms of

these parameters, the spectral asymmetry ηl = 2(M
(l)
↓ −

M
(l)
↑ ), with M

(l)
↑,↓ = max(0,M −M (l)

+,−).
The exponential part of |BCS〉 explicitly illustrates

the singlet pairing while M
(l)
σ 6= 0 signals the presence of

unpaired fermions in the ground state. The eigenvalue of
L̂ can now be obtained directly from Eq. (4) by summing
the individual contributions of the filled quasi-particle
states and noting that b̃(l), d̃(l) carry the same L -charges
as b(l), d(l). While contributions from the paired levels
cancel out, the occupied levels lead to

L = −1

2

∑
l

(
l +

k

2

)
ηl. (6)

Alternatively, this equation can be derived directly
from Eq. (5), and has previously appeared in the liter-
ature in the context of chiral SFs [37, 38], where k is

replaced by the chirality ν. Physically, Eq. (6) quantifies
the contribution of unpaired fermions to the OAM.

The physics originating from unpaired fermions in the
ground state of a paired state was previously identi-
fied and studied in nuclear physics [41], FFLO super-
fluids [43], and chiral superfluids paired in higher partial
waves [37–39, 44, 45]. We now demonstrate that for a
weakly-paired s-wave SF with an MQV, a nontrivial ηl
and the associated unpaired fermions arise as a conse-
quence of vortex core states.

In the BCS regime, the spectrum of the vortex core (vc)
states for a singly quantized vortex |k| = 1 was calculated
analytically by Caroli-deGennes-Matricon (CdGM) [13]

who found a single branch E
(l)
vc (per spin projection) that

crosses the Fermi level. This branch is PH symmetric

with respect to itself, E
(l)
vc = −E(−l−1)

vc and at low ener-

gies (Evc � ∆0) behaves linearly E
(l)
vc = −ω0(l + 1/2),

where the mini-gap ω0 ∼ ∆0/(kF ξ). By numerically di-
agonalizing H(l) for k = 1, we find that ηl = 0 for all
l and hence there are no unpaired fermions in the BCS
ground state of an s-wave paired SF with an elementary
vortex. Eq. (6) then predicts L = 0 and thus the ground
state expectation value Lz = N/2, which agrees with
self-consistent BdG calculations [11]. The physics here
is analogous to that of weakly paired p + ip SFs, where
there is a single PH symmetric edge mode that carries no
OAM [37, 46, 47].

For an MQV with winding number k, the CdGM
method can be generalized and the vortex core spec-
trum analytically calculated within the BdG framework
(see [36]). In agreement with an argument relating the
number of vortex core branches to a topological invari-
ant [48], we find that |k| branches (per spin projection)
cross the Fermi level. At low energies these branches dis-
perse linearly, Ej(l) = −ω0(l − lj), where j = 1, . . . , k
indexes the branches and the lj ’s are the angular mo-
menta at which the branches cross the Fermi level. This is
consistent with results obtained by numerically diagonal-
izing the BdG Hamiltonian H(l) (for k = 2, see Fig. 2a)
and with previous results on MQVs in superconductors,
obtained through quasi-classical approximations [48–50]
and numerical simulations [51–54].

Since in the BEC regime the spectrum is completely
gapped for any k, we find ηl = 0 for all l and thus
the ground state OAM is exactly Lz = kN/2. On the
other hand, in the weakly-paired regime the energy spec-
trum of an MQV exhibits a nontrivial spectral asymme-
try. We consider the case k = 2 first (Fig. 2a), where
there exist two vortex core branches with linear disper-

sions at low energies, E
(l)
vc,± ∼ −ω0(l − l±) with l+ > l−.

Under PH symmetry, these branches are exchanged as

E
(l)
vc,+ = −E(−l−2)

vc,− which fixes l− = −(l+ + 2). As shown
in Fig. 2b, we find that at these crossing points ηl acquires
a non-zero value: ηl = −2 for l− < l < −1 and η = +2
for −1 < l < l+, with ηl = 0 at l = −1. Intuitively, this
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FIG. 2: BdG solution for MQVs with ∆0 = 0.15EF , µ = EF ,
and kFR = 80: (a) Comparison of energy spectrum for k = 2
with analytic approximation (in red); (b) spectral
asymmetry for k = 2; (c) energy spectrum for k = 3 and (d)
for k = 4.

can be understood as follows—at large negative l, the
branches are merged into the bulk and since there are
no sub-gap states, ηl = 0. On increasing l, the branches
begin separating from the bulk but since both have pos-
itive energy, ηl still vanishes. At l− however, one of the
branches crosses the Fermi energy, creating a difference
of precisely two between the number of negative and pos-
itive energy eigenvalues of H(l). At l = −1, ηl necessarily
vanishes due to PH symmetry, which also fixes ηl for
l > −1. In contrast with |k| = 1, the branches are not
PH symmetric with respect to themselves, allowing the
spectral asymmetry to acquire a non-zero value in the
BCS regime. The fact that ηl changes from the BEC to
the BCS regime can also be understood as a consequence
of spectral flow along the vortex core states, since ηl (and
hence L ) cannot change its value in any other way.

A non-zero spectral asymmetry ηl appears generally
for any |k| ≥ 2 within the BCS regime: for even k (see
Fig. 2d), there are |k|/2 pairs of branches such that
the branches within each pair are PH symmetric with
each other. ηl then changes by ±2 whenever one of these
branches crosses the Fermi level; for odd k (see Fig. 2c)
there are (|k|−1)/2 pairs that contribute to a non-trivial
ηl, since the branches within each pair go into each other
under a PH transformation, while the remaining branch
is PH symmetric with respect to itself and therefore does
not contribute to ηl.

Having established the existence of a non-vanishing ηl,
we see that there must exist unpaired fermions in the
BCS ground state for |k| ≥ 2, and as a consequence of
Eq. (6), L acquires a non-trivial ground state eigenvalue.
For k = 2, this is L = −l2+ − l+, where we used PH
symmetry to relate l− to l+. Importantly, the analytic
calculation of the vortex core states performed in [36]
demonstrates that the positions of the crossing points are
located at l± ∼ kF ξ with the pre-factor fixed by the form

FIG. 3: The analytic prediction Lz/N = 1− α(ξ/R)2 (red
line) fits the numerical data (blue dots) well over a wide
window within the BCS regime, 0.05 . ∆0/EF . 0.25, for
an MQV with k = 2. The slope of the fit equals two as
shown on a log-log plot.

of ∆(r). This scaling persists in self-consistent numerical
calculations [52–54]. Eq. (6) along with this scaling thus
establishes the reduction of the OAM of the k = 2 MQV
in the weakly paired regime. To leading order in kF ξ,
L = Lz − N ∼ − (kF ξ)

2
. As a result, the OAM is sig-

nificantly suppressed from LBECz = N since kF ξ � 1
in the BCS regime (∆0 � EF ). This analysis confirms
that the unpaired fermions carry angular momentum op-
posite to that carried by the Cooper pairs. On a disc,
N ≈ (kFR)2/2, leading to Lz/N ≈ 1 − α (ξ/R)

2
, where

α is an O(1) constant fixed by ∆(r). As an independent
check, we have verified this behavior by numerically cal-
culating Lz/N using the full BdG solution [36]. In Fig. 3,
the quadratic scaling is shown to be in good agreement
with the numerical data. We thus expect a substantial
reduction of the OAM in the BCS regime, where ξ can
be comparable to R [16]. We also expect that when two
elementary vortices merge into a k = 2 MQV [49, 50], the
ground state OAM decreases from Lz = N by an amount
∼ (kF ξ)

2.

A central feature of our result is that the suppression of
Lz for |k| ≥ 2 is independent of any boundary effects and
is solely determined by the splitting between the vortex
core branches. Given this insensitivity to boundary de-
tails, we expect our results to hold for more general sam-
ple geometries, which may lack axial symmetry. Unlike
the ground state energy, which might depend strongly
on the gap profile, the OAM thus exhibits universal scal-
ing behavior in the weak pairing BCS regime. The lack
of dependence of the OAM on the system boundary is in
stark contrast with weakly-paired chiral (e.g., d+id) SFs,
where it was shown [37, 39] that the OAM is suppressed
due to the topological edge modes, but that this effect is
strongly dependent on the edge details [38, 44, 45, 55].
Our analysis hence suggests that s-wave SFs with MQVs
may prove to be a more robust platform for investigat-
ing the intriguing suppression of the OAM in paired SFs.
While the OAM has been measured in SFs [56–58], we
also expect signatures of unpaired fermions—which cre-
ate a current localized around the vortex core that flows
counter to the superflow—in local supercurrent density
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measurements in MQV states [17].
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