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We address the problem of a lightly doped spin-liquid through a large-scale density-matrix renor-
malization group (DMRG) study of the t-J model on a Kagome lattice with a small but non-zero
concentration, δ, of doped holes. It is now widely accepted that the undoped (δ = 0) spin 1/2
Heisenberg antiferromagnet has a spin-liquid groundstate. Theoretical arguments have been pre-
sented that light doping of such a spin-liquid could give rise to a high temperature superconductor
or an exotic topological Fermi liquid metal (FL∗). Instead, we infer that the doped holes form an
insulating charge-density wave state with one doped-hole per unit cell - i.e. a Wigner crystal (WC).
Spin correlations remain short-ranged, as in the spin-liquid parent state, from which we infer that
the state is a crystal of spinless holons (WC∗), rather than of holes. Our results may be relevant to
Kagome lattice Herbertsmithite upon doping.

Introduction: Broad interest in quantum spin liquid
phases (QSLs) was triggered by the notion that they can
be viewed as insulating phases with preexisting electron-
pairs, such that upon light doping they might automat-
ically yield high temperature superconductivity.[1–7] It
has also been proposed that a doped QSL might form an
exotic topologically ordered Fermi liquid state (known
as an FL∗ state)[8, 9], or various other topologically or-
dered versions of familiar phases.[10] More broadly, it has
been suggested that a host of behaviors of highly cor-
related electronic systems can be best understood from
the perspective of doped spin-liquids.[11–16] However, a
“microscopic” theory of QSLs is difficult, as they seem
to arise only in narrow portions of the generalized phase
diagram where more typical broken symmetry states are
suppressed by frustration, and in an “intermediate cou-
pling” regime where neither the effective kinetic nor the
interaction energy is dominant.

The spin-1/2 antiferromagnet on the Kagome lattice
(depicted in Fig.1) with nearest-neighbor (NN) Heisen-
berg interactions, i.e., HJ in Eq.(1), is geometrically
frustrated. A number of numerical simulations [17–22]
have provided strong evidence that its ground state is
a “Z2-QSL” with exponentially falling spin-spin corre-
lations and a non-zero spin-gap, although some recent
studies[23–28] have suggested that the true ground-state
may be a gapless (nodal) QSL. The fact that the observed
spin correlation lengths in the earlier references are short
compared to the width of the ladders studied leaves little
room to doubt that they reflect the properties of a spin-
gapped state. None-the-less, it is plausible that there
are at least two distinct QSL phases - one gapped and
another ungapped - that are very close in energy such
that the balance between them can shift as a function
of ladder width, geometry, or slight changes in parame-
ters; if this is the case, it could reconcile the two sets of
findings while leaving open the issue of which QSL is the
ground-state in the 2D limit.

FIG. 1: (Color online) The t-J model on Kagome cylinder,
where the electrons live at the vertices (filled circles). Periodic
(PBC) and open (OBC) boundary conditions are imposed
respectively along the directions specified by the lattice basis
vectors, e2 and e1. Each basis (denoted by small triangle in
the shaded region) has three sites (A, B and C) and three
bonds (a, b and c). t and J are hopping intergral and spin
exchange interactions between NN sites. Lx and Ly are the
number of unit cells in the e1 and e2 directions.

Independent of which QSL has the lowest energy in
2D, in the present study, the fact that the spin corre-
lation lengths we observe are several times shorter than
the width of our cyllinders leaves little doubt that we are
studying the properties of a doped, fully gapped Z2 spin
liquid. Experimentally, the celebrated material Herbert-
smithite is a realization of the two-dimensional Kagome
antiferromagnet[29, 30] where the copper ions carry spin-
1/ 2 magnetic moments which condense to form a QSL
groundstate. Specifically, experimental evidence of frac-
tional spin excitations has been found in neutron scatter-
ing and strong indications of a spin-gap are seen in NMR
studies of single crystals. [31, 32]

The elementary excitations of a Z2-QSL can be
constructed[3, 33] as combinations of a fermionic charge-
0 spin-1/2 “spinon,” a charge-e spin-0 bosonic holon, and
a neutral topological “vison.” The statistics of these par-
ticles is a matter of convenience - for instance a fermionic
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holon can be constructed[34] as a boundstate of a bosonic
holon and a vison, while a normal spin-1/2, charge-e hole
can be constructed as a boundstate of a spinon and a
holon. (We consider only hole-doping of the QSL, so we
can safely ignore negatively charged excitations.)

If we assume that the states achieved by adding a net
positive charge density δ � 1 per site to a QSL insula-
tor can be described in terms of dilute excitations on top
of a background QSL, then a variety of possible ground-
state phases are natural to consider: If the lowest energy
charged excitations are ordinary holes, then these can ei-
ther remain itinerant, forming a FL∗, (which is a distinct
phase from a usual Fermi liquid as the Fermi surface only
encloses an area corresponding to the density of doped
holes, so violates Luttinger’s theorem) or if they crystal-
ize, they might form an insulating hole Wigner Crystal
(hWC) with one doped hole per emergent unit cell. [41]
If, on the other hand, the lowest energy charged exci-
tations are holons, then they could condense to form a
conventional superconducting state with small superfluid
density ∼ δ, or they could crystalize. We refer to the
later state as WC∗, which is distinguishable from hWC
in that there are no low energy spin degrees of freedom.
One could also imagine that the lowest energy charged
excitations are holon pairs (or equivalently, spin-singlet
hole pairs), which if they crystalize would form an in-
sulating WC of Cooper pairs. Still more complicated
phases could occur if a fraction of the charged excitations
crystalize while others remain itinerant, or by condensing
fermionic holons or bosonic spin-1/2 charge-e holes.

Principle Results: We find that the spin-spin corre-
lation function (Fig.2) is remarkably insensitive to dop-
ing. Indeed, the spin correlation length, ξs . 2 lattice
constants, is small compared to the circumference of the
cylinders studied and to the mean separation between
doped holes. The fact that they look little different than
those for δ = 0 is consistent with viewing the system as a
lightly doped QSL. The expectation value of the charge
density (Figs. 4 and 5) is inhomogeneous, and the ampli-
tude of the charge density variations is relatively insen-
sitive to system size, implying that the ground-state in
the thermodynamic limit spontaneously breaks transla-
tion symmetry. Moreover, for the most part, the charge
density appears to favor a triangular lattice with one
doped hole per unit cell. Given the fact that there is
no doping-induced magnetic order, we may identify this
state as a WC∗. However, the precise crystal structure of
the WC∗ in the thermodynamic limit is not something we
can infer with confidence, as in some cases, depending on
the value of δ and the circumference of the cylinder, we
find a stripe crystal rather than a triangular lattice. All
superconducting correlations are extremely short-ranged
(Fig.3), with a correlation length ξSC . 1.3. [42]

Model Hamiltonian: We employ the density-matrix
renormalization group (DMRG) [35, 36] to investigate
the ground state properties of the hole-doped Kagome
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FIG. 2: (Color online) The spin-spin correlation functions
F(r) along the e1 direction for (a) YC-6 and (b) YC-8 cylin-
ders at different hole doping concentrations δ. r is the dis-
tance between two sites where the reference A site is in the
middle of the system. Inset: The spin-spin correlation length
ξs as a function of δ, by fitting F(r) to an exponential function

F(r) ∼ e−r/ξs . Here Lx=16∼24.

t-J model depicted in Fig.1) defined by the Hamiltonian

H = −t
∑
〈ij〉σ

(c†iσcjσ + h.c.) + J
∑
〈ij〉

(
Si · Sj −

1

4
ninj

)
(1)

where c+iσ (ciσ) is the electron creation (annihilation) op-

erator with spin-σ on site i. ~Si is the spin operator and
ni =

∑
σ c

+
iσciσ is the electron number operator. 〈ij〉

denotes NN sites and the Hilbert space is constrained
by the no-double occupancy condition, ni ≤ 1. At half-
filling, i.e., ni = 1, the t-J model reduces to the spin- 12
antiferromagnetic Heisenberg model.

The lattice geometry used in our simulations is de-
picted in Fig.1, where e1 and e2 denotes the two basis
vectors. We consider Kagome cylinders with periodic
(open) boundary condition in the e2 (e1)-direction. A
cylinder geometry introduced Ref.[37] (which we will re-
fer to as YC) is used such that one of the three bond
orientations is along the e2-axis. Here, we focus on cylin-
ders with width Ly and length Lx, where Ly and Lx are
the numbers of unit cells (2Lx and 2Ly are the num-
ber of sites) along the e2 and e1 directions, respectively.
Notice that the unit cells at the right boundary of the
cylinder contain only two sites (A and C) in order to re-
duce the boundary effects due to sharp edges. Following



3

Ref.[18, 37], we refer to the cylinders as YC-2Ly, whose
total number of sites is N = Ly(3Lx + 2) = Nu + 2Ly,
where Nu denotes the number of sites inside intact unit
cells. In this paper, we focus primarily on YC-6 and
YC-8 cylinders, i.e., Ly=3 and 4, with Lx=12∼24. We
have also considered YC-10 cylinders, i.e., Ly=5, and
found similar results (see 4(e)). As usual, the doping
level of the system away from half-filling is defined as
δ = Nh/Nu, where Nh is the number of holes. Although
Nu 6= N so that the average value of δ differs slightly
from δ̃ = Nh/N , deep in the bulk, i.e., relatively far from
the open boundaries, δ̃ = δ.

For the present study, we focus on the lightly doped
case with 0 ≤ δ ≤ 11%. We set J=1 as an energy unit
and consider t=3. The results also hold for other t. We
perform up to 50 sweeps and keep up to m=10000 DMRG
states with a typical truncation error ε ∼ 10−6 for YC-6
cylinders, ε ∼ 10−5 for YC-8 cylinders and ε ∼ 5× 10−5

for YC-10 cylinders. This leads to excellent convergence
for our results when extrapolated to m = ∞ limit (see
Supplementary Information).

Spin-Spin correlations: To describe the magnetic
properties of the ground state, we calculate the spin-spin

correlation functions defined as F(r) = 1
Ly

∑Ly
y=1 |〈S0 ·

Sr〉|. Here S0 denotes the spin operator on the reference
A-site in the middle of the cluster, while Sr runs over
both A and B sites along the e1 -direction with the dis-
tance r between them. At half-filling, i.e., δ = 0, the
ground state of the system is a QSL [17–20, 37] with
short-range spin-spin correlations. This is confirmed by
our study where F(r) for YC-6 and YC-8 cylinders in
Fig.2 both decay rapidly, and can be well fitted by an
exponential function F(r) ∼ e−r/ξs with short correla-
tion lengths ξs=1.1∼1.3 lattice spacings.

Upon doping, we find that the spin-spin correlations
still remain short-ranged, where F(r) for various δ > 0
and different system sizes are shown in Fig.(2). For all
cases, we find that F(r) decays exponentially with small
ξs, although ξs slightly depends on δ and lattice geom-
etry. For both YC-6 and YC-8 cylinders, we find that
ξs=1∼2 lattice spacings, similar to those of the QSL state
of the undoped cylinder.

Superconducting correlation: We have also inves-
tigated the possiblity of superconductivity. Since the
ground state remains a spin-singlet state upon doping,
we focus on spin-singlet superconductivity. A diagnos-
tic of superconducting order is the pair-field correlator
defined as

Φαβ(r) =
1

Ly

Ly∑
y=1

|〈∆†α(i0)∆β(i0 + r)〉|. (2)

Here, ∆†α(i) is the spin-singlet pair-field creation opera-

tor given by ∆†α(i) = 1√
2

(
c†i↑c

†
i+α↓ − c

†
i↓c
†
i+α↑

)
, where

α denotes the bond type (see Fig.1), i.e., a, b or c,
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FIG. 3: (Color online) The superconducting pair-field corre-
lation functions Φaa(r) along the e1 direction between (a-a)-
bonds for (a) YC-6 and (b) YC-8 cylinders at different hole
doping concentrations δ. r is the distance between two bonds
with the reference bond in the middle of the system. (c) The
superconducting correlation length ξsc as a function of δ, by
fitting Φ(r) to an exponential function Φ(r) ∼ e−r/ξsc . Here
Lx=16∼24.

with bond vectors defined as a = e1/2, c = e2/2 and
b = (e2 − e1)/2. i0 is the index of the reference bond in
the middle of the cluster, and r is the distance between
two bonds along the e1-direction.

In the present study, we find that Φaa, Φbb, Φcc, Φab,
Φbc and Φca all decay exponentially for both YC-6 and
YC-8 cylinders (see Fig.3(a) and (b)). For large separa-
tions along the cylinder, 1� |r| � Lx where r = rê1, Φ

can be well expressed as Φαβ(r) ∼ e−|r|/ξ
αβ
sc from which

we derive the superconducting correlation length ξαβsc . As
shown in Fig.3(c), ξsc = 0.5 ∼ 1.3 lattice spacings for all
doping levels 0 < δ ≤ 11% we have explored. Therefore,
our results suggest that there is no (quasi-) long-range
superconductivity in the doped Kagome QSL.

Charge density wave order: Finally, we consider
the charge density profile nh(x, y) = 1 − n(x, y), where
n(x, y) is the electron density on site i = (x, y). Fig.4
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(a) YC-6, Lx=16, δ=1/18, Nh=8

(b) YC-6, Lx=16, δ=1/9, Nh=16

(c) YC-8, Lx=18, δ=1/27, Nh=8

(d) YC-8, Lx=18, δ=1/18, Nh=12

(e) YC-10, Lx=18, δ=1/27, Nh=10

FIG. 4: (Color online) The charge density profile nh(x, y)
at different hole doping concentrations δ for YC-6 in (a)-(b),
YC-8 in (c)-(d) and YC-10 cylinders in (e).

shows some examples of nh(x, y) at different δ for YC-
6, YC-8 and YC-10 cylinders. Clear CDW ordering is
observed[43], although its pattern depends on both the
lattice geometry and doping level. There is unidirec-
tional CDW order at low doping levels for YC-6 cylin-
ders, but this appears to be special for YC-6 geometry.
For higher doping level for YC-6 cylinders and all dop-
ing levels for YC-8 cylinders, the CDW order resembles
a two-dimensional Winger crystal, Fig.4(b)-(d).

Approximately, the doped system can be divided into
new larger emergent unit cells, each containing one of the
red stripes in Fig.4(a) or one of the red-spots in Fig.4(b)-
(e); the number of emergent unit cells is equal to the
number of doped holes at all doping levels. This is not a
crystal of hole-pairs.

To determine whether the CDW order survives in
the thermodynamic limit, we further calculate the
averaged rung charge density defined by nh(x) =
1
Ly

∑Ly
y=1 nh(x, y). Examples of nh(x) at different δ are

plotted in Fig.5. Here, the existence of long-range CDW
order in the ground state can be determined by fitting the
amplitude Acdw of the oscillation of nh(x) and extrapo-
lating the value to Lx = ∞. To minimize the bound-
ary effect, we have removed four data points from both
ends in the fitting process. Examples of the extrapolation
are given in Fig.5. The observed finite amplitude Acdw
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FIG. 5: (Color online) The charge density profile nh(x) (in-
cludes both A and B sites) at different hole doping concentra-
tion δ for YC-6 in (a)-(c) and YC-8 cylinders in (d)-(e). (f)
shows CDW order parameter Acdw by fitting to nh(x) using
function nh(x) = Acdw cos(Qcdwx + θ) + · · · , where Qcdw is
ordering wave vector.

in the thermodynamic limit establishes the presence of
long-range CDW order.

Discussion: In light of our observations, it is worth
asking if there is an intuitive reason that the holons crys-
talize, rather than forming one of the possible quan-
tum fluid states. It is already clear from previous nu-
merical studies that the QSL in the Kagome system is
nearly degenerate with a number of possible valence-
bond-crystalline phases. It is thus natural to imagine
that the holon is a highly structured particle, surrounded
by a “polaronic” cloud of valence-bond-crystal like cor-
relations.

In Fig.S3 in the Supplemental Section, we show that
two doped holes in cylinders of moderate length (Lx=12
& 16) induce a strong and extended pattern of valence-
bond-crystalline order in their neighborhoods. The most
obvious correlary is that the holon effective mass is
strongly renormalized (increased). Moreover, the in-
duced valence bond order implies the existence of mod-
erate range effective interactions between holons, which
if they are repulsive can naturally lead to crystallization.
Note that in Fig.S2, we show that the spin-gap with two
doped holes (extrapolate to the Lx →∞ limit) is of the
same order, although probably smaller than in the un-
doped ladder; this further corroborates our identification
of this as a two-holon state.

Since the Kagome antiferromagnet, i.e., HJ in Eq.(1),
has been shown to be a realistic model to describe Her-
bertsmithite [29, 30], our results may be directly rele-
vant to the real material upon doping. Consistent with
our results, recent experimental studies have reported the
absence of superconductivity in Kagome systems doped
with either electrons [38] or holes [39]. While we have
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only studied finite cylinders, it is plausible that the
results are representative of the thermodynamic limit,
given the fact that the size of the cylinders, including
both width Ly and length Lx, are much larger than both
the spin-spin and superconducting correlation lengths.
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