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Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons
behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which
renders the spatial patterns of current and electric field strikingly dissimilar. Notably, driven by
the viscous friction force from adjacent layers, current can flow against the electric field, generating
negative resistance, vorticity and vortices. Moreover, different current flows can result in identical
potential distributions. This sets a new situation where inferring the electron flow pattern from
the measured potentials presents a nontrivial problem. Using the inherent relation between these
patterns through the complex analysis, here we propose a method for extracting the current flows
from potential distributions measured in the presence of a magnetic field.

For electron transport in conductors, one can outline
two broadly defined scenarios depending on the rela-
tive strength of disorder and interactions[1–4]. In the
disorder-dominated regime one finds “individualist” be-
havior of electrons moving in straight lines like pinballs
bouncing among impurities. Fast momentum relaxation
gives the familiar Ohm’s law with current locally propor-
tional to the electric field. In the interaction-dominated
regime, when particles exchange their momenta at the
rates much faster than the disorder collision rates, elec-
trons move in a neatly coordinated way, in many ways
resembling the flow of viscous fluids [5–15].

Signatures of viscous flows have been observed in ultra-
clean GaAs, graphene and PdCoO2[16–19]. Graphene,
in particular, is well suited for studying electron viscos-
ity since low disorder and weak electron-lattice coupling
render momentum-conserving two-body (e-e) collisions
dominant in a wide range of carrier densities and temper-
atures. In contrast, momentum-nonconserving Umklapp
e-e processes are forbidden because of graphene crystal
symmetry. Gate-tunable collision rates allow to cover the
ballistic and viscous regime in a single sample.

Current in an electron fluid is locally proportional to
momentum density, but its relation to the electric field
is nonlocal since the viscous force is proportional to the
velocity Laplacian. As a result, electric field and current
can be quite different vector fields. Unraveling the re-
lation between them is one of the challenges of viscous
electronics. In particular, one needs to find ways to re-
construct currents from the potentials, measurable by a
variety of experimental techniques. As we will see, while
the resulting integral relations are nontrivial, in two di-
mensions they can be tackled using a powerful framework
of complex analysis. This provides a direct link between
measured potentials and the current flow patterns.

We will see that the currents depend not only on the
potentials but also, in an essential way, on the boundary
conditions. As a result, identical potential distributions
can correspond to totally different flow patterns. This

FIG. 1: (color online) Streamlines (black) and potential color
map for current injected through a point in a halfplane,
Eqs.(2),(11). The velocity is shown by white arrows, its mag-
nitude is proportional to the density of streamlines. Boundary
conditions: a) no-stress (i.e. shear-stress free); b) no-slip.

surprising behavior is illustrated in Fig.1 which shows
a flow injected into a conducting halfplane through a
point-like source at the edge. For an incompressible flow,
charge continuity yields ∇ · j = ne∇ · v = 0. We resolve
this condition by introducing the stream function

v = z×∇ψ = (−∂yψ, ∂xψ) (1)

(see e.g. [22]). The isolines of ψ define streamlines since
their tangent is everywhere parallel to the velocity. Pan-
els (a) and (b) in Fig.1 present the streamlines for the
no-stress (i.e. zero shear-stress) and no-slip boundary
conditions, respectively. In both cases the streamlines
are straight lines pointing outward away from the source.
However, the two flows have very different angular dis-
tributions, described by the stream functions

ψ1(θ) =
Ĩ

4π
(sin 2θ− 4θ), ψ2(θ) =

Ĩ

2π
(sin 2θ− 2θ), (2)
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where θ = tan−1 y/x is the polar angle and Ĩ = I/ne is
current nondimensionalized with the carrier density and
charge. The currents depend on the angle respectively
as 1 + sin2 θ and 2 sin2 θ. The potential map is identi-
cal in both cases, taking negative values at the boundary
[17, 20, 21], see Eq.(11) and discussion below. Both flows
pictured in Fig.1 have nonzero vorticity ω(r) = ∇ × v,
however the streamlines do not form loops. This illus-
trates that, in a departure from a common belief, vortices
are not required for negative voltage to occur.

Understanding the current and voltage distributions in
two dimensions is facilitated by complex analysis which
organizes distinct physical fields into a single holomor-
phic function. On the account of long-range Coulomb in-
teractions we treat electrons as an incompressible fluid.
A low-Reynolds flow obeys the Stokes equation which
states the balance of viscous friction and electric force:

η∇2v(r) = ne∇φ(r). (3)

Here φ(r) is the electric potential and η is the viscosity.
Combining (3) and (1), we see that the vorticity ω =
∇2ψ = (∂2x + ∂2y)ψ and φ form a Cauchy-Riemann pair

∂xω = (en/η)∂yφ, ∂yω = −(en/η)∂xφ. (4)

The quantities ω and φ are therefore proportional to the
imaginary and real part of a holomorphic function of z =
x + iy, respectively. This behavior is distinct from the
Ohmic case j = env = −σ∇φ, where

enz×∇ψ = −σ∇φ. (5)

In this case it is the stream function ψ that takes on the
role of a Cauchy-Riemann counterpart of the potential φ.

Before moving on, we discuss the validity of Eq.(3). In
a clean conductor, such as graphene, Eq.(3) holds at the
lengthscales greater than the e-e collision mean free path
`ee but shorter than the lengthscales set by momentum-
nonconserving scattering by residual disorder or phonons.
The latter can be described by a resistivity term as(

η∇2 − n2e2ρ
)
v(r) = ne∇φ(r). (6)

The new term, despite being small, becomes relevant at
distances exceeding `∗ =

√
η/n2e2ρ. To estimate `∗ we

use the Drude model for resistivity, ρ = pF /ne
2`p with

`p the elastic mean free path, and express the dynamic
viscosity as η = nmν. Here the kinematic viscosity ν rep-
resents momentum diffusion coefficient, ν ∼ v`ee. Com-
bining these estimates we arrive at `∗ = (`p`ee)

1/2. In
a clean system, e.g. graphene, these lengthscales satisfy
`ee � `∗ � `p. The values `p and `ee, estimated for
graphene[26], yield `∗ on the order of a few micrometers.
Below we focus on the lengthscales `ee � r � `∗ where
Eq.(3) holds. Detailed analysis of both viscous and ohmic
effects through Eq.(6) can be found in [26].

Extracting the current spatial dependence from that
for the potential, which is readily measurable by a vari-
ety of experimental techniques[23, 24], can in principle
be done by inverting the integral relations (4). How-
ever, instead of facing this hard task, here we suggest an
approach that involves direct measurements rather than
indirect computations (cf. Ref.[25]). Namely, we pro-
pose measuring magnetoresistance in the presence of a
classically weak magnetic field, such that the cyclotron
radius is much greater than the mean free path `ee. In
this case, the Eqs.(3),(6) acquire an extra term due to
the Lorentz force:

(
η∇2 − n2e2ρ

)
v = ne∇φ+neBv×z.

Substituting (1) we obtain(
η∇2 − n2e2ρ

)
v(r) = ne∇φ(r) + neB∇ψ. (7)

Taking the curl of (7) we obtain
[
η(∇2)2 − n2e2ρ∇2

]
ψ =

ne(v · ∇)B. We see that when the magnetic field does
not change along the flow, the stream function ψ obeys
the equation identical to that at B = 0.

Writing (7) as a balance between momentum loss due
to Ohmic term and the divergence of the momentum flux,
we see that constant B enters only the diagonal (pres-
sure) part of the flux:

∂

∂xi

[
ne(φ+Bψ)δik + η

(
∂vi
∂xk

+
∂vk
∂xi

)]
= ρn2e2vk. (8)

Eq.(8) implies that constant magnetic field does not af-
fect the boundary conditions on ψ considered here. In-
deed, the tangential derivative of ψ is completely deter-
mined by the incoming/outgoing current. The normal
derivative (equal to the tangential velocity) is determined
by friction, that is by the continuity across the boundary
of the normal flux of tangential momentum p‖ i.e. the
off-diagonal part of the flux tensor in Eq.(8). The no-slip
condition (zero p‖) means full momentum relaxation at
the boundary, which apparently cannot be affected by the
magnetic field. The no-stress condition (zero flux of p‖)
takes place when fluid borders the medium which does
not support tangential stress; here again magnetic field
does not change the condition. The same is true for the
mixed boundary condition, where the flux of tangential
momentum at system boundary is proportional to the
tangential velocity[26].

Since neither equation nor boundary conditions
change, we conclude that the stream function remains
unchanged when a constant weak B field is applied. Un-
der these conditions, the quantity φ+Bψ must be equal
to the potential obtained at B = 0. Therefore, the φ and
ψ dependence on B takes on a very simple form

φB 6=0(r) = φ0(r)−Bψ0(r), ψB 6=0(r) = ψ0(r) (9)

where the subscript zero denotes the quantities found at
B = 0. This relation can be used to obtain the stream
function ψ directly from the electric potential measure-
ments. Alternatively, and perhaps more conveniently, ψ
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can be obtained through antisymmetrization as

2Bψ0(r) = φ−B(r)− φB(r). (10)

The stream function is a fundamental fluid-mechanic
quantity that describes incompressible flows. The rela-
tion (10) therefore provides a vehicle that directly relates
current flows with the measured potentials. Repeating
the steps that have led us to Eq.(4), we see that for vis-
cous flow in the presence of aB field the Cauchy-Riemann
relations are obeyed by the quantities ω and φ+Bψ.

As one can see from (4), electric field can only arise
in the presence of nonuniform flow vorticity. To under-
stand better the role of vorticity, we recall that viscous
friction is determined by the symmetric part of the ten-
sor of velocity derivatives. The vorticity, which is the
anti-symmetric part of this tensor, describes rotation of
a fluid element as a whole that does not cause friction
(e.g. see [22]). It is vorticity inhomogeneity that pro-
duces electric field required to balance viscous friction.
The relations (4) imply, in particular, that in irrotational
viscous flows, wherein ω = 0, the electric potential φ is
constant and the electric force vanishes in the bulk. Such
“freely flowing” currents are described by a velocity po-
tential, v ∝ ∇λ. Potential flows occur when the vortic-
ity vanishes on the boundaries, in which case it can be
shown to vanish everywhere. In terms of the electric po-
tential φ this translates into equipotential i.e. metallic
boundaries (the fascinating topic of electric field expul-
sion from viscous charge flows with metallic boundaries
will be discussed elsewhere). In contrast, the potential is
not identically constant and the vorticity is nonzero for
nonmetallic boundaries, in which case a wide variety of
non-trivial current and potential patterns can arise.

An instructive example is provided by viscous flows
originating from a point source at the edge of the half-
plane y ≥ 0. The solution for general boundary condi-
tions including no-slip and stress as limiting cases is pre-
sented in [26]. For the no-stress limit it gives Eq.(2). The
vorticity can then be derived as ω = ∇2ψ = Ĩ Im z−2/2.
The potential, obtained from (4), has a quadrupole form

φ(x, y) =
Ĩη

2ne
Re z−2 = − Ĩη

2ne

cos 2θ

r2
. (11)

In the no-slip case, in a similar vein, we find ψ2(θ) in
Eq.(2). Interestingly, while the streamlines are straight
lines directed outward from the source in both cases, the
actual velocity patterns are quite different (see Fig.1).
The quantities ω and φ, obtained from ψ2(θ), have the
same form as in Eq.(11) but are twice larger than in the
no-stress case, where there is no edge friction.

Both the viscous force and the electric force, balanc-
ing each other, are nonzero. The electric field exhibits
multiple sign changes,

∂φ

∂r
∝ cos 2θ

r3
, r−1

∂φ

∂θ
∝ sin 2θ

r3
. (12)

FIG. 2: (color online) Current streamlines (black) and po-
tential color map for a flow across the strip. Arrows mark
the streamlines nearest to separatrices. Stagnation points are
labeled s1,2, s′1,2. To elucidate the behavior near contacts,
two regions are shown with a ten-fold density of streamlines.
Boundary conditions: a) no-stress, b) no-slip.

reflecting that the electric forces push the fluid outward
for π/4 < θ < 3π/4 but pull it inward near boundaries,
where they balance the viscous drag from the faster-
moving adjacent layers of the fluid. It is this field that
produces the negative voltage at the edge [21].

Having established that vorticity is necessary for the
appearance of electric field inside a viscous charge flow,
we now discuss vortices. It is important to distinguish the
generic features due to local vorticity from a more specific
global pattern of a vortex. Indeed, nonzero vorticity at
a point means that an infinitesimal fluid element rotates
as it moves. Such motion, however, may take place even
along perfectly straight streamlines such as those in the
flows pictured in Fig.1, where vorticity is non-zero since
different streamlines have different velocities. Vortices,
on the other hand, are defined by closed-loop streamlines,
that is they are global rather than local structures. Ac-
cordingly, unlike the halfplane geometry in Fig.1, vortices
can be readily produced in a confined geometry. Vortices
can be characterized by separatrix lines which separate
the closed and open streamlines. Below we illustrate this
general behavior for a strip of a finite width.

We start with the no-stress boundary condition and
consider the point-like source and drain positioned at
(0, 0) and (0, w) in the strip −∞ < x < ∞, 0 < y < w.
A solution of the bi-harmonic equation with ∂xψ = Ĩδ(x)
and ∂2ψ/∂y2 = 0 at y = 0, w reads

ψ(x, y)=
Ĩ

4π

∞∫
−∞

eikxdk

ik cosh kw
2

(a cosh kỹ − kỹ sinh kỹ), (13)

where we defined ỹ = y − w/2 and a = 2 + kw
2 tanh kw

2 .
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The streamlines, given by the contours of ψ, are pictured
in Fig.2a. The flow, directed from source to drain along
the nominal current path, mimics that in Fig.1 near each
contact. Closed streamlines form a pair of vortices.

To analyze the separatrices of the flow, we consider the
velocity at the boundary y = 0. Simple algebra yields

vx(x, 0) = −∂ψ
∂y

=
I
(
2− πx

w coth πx
w

)
4wne sinh(πx/w)

. (14)

At |x| � w, the velocity is directed away from the source
as in a halfplane, vx ∝ 1/x. However, vx is directed to-
wards the source at |x| � w, representing backflow due to
vortices. We therefore conclude that there are stagnation
points at the edge, where vx = vy = 0. At such points,
marked s1, s2, s′1, s′2 in Fig.2a, two streamlines meet:
one directed along the strip edge and another perpen-
dicular to it. The latter represents a separatrix between
the source-to-drain streamlines and the vortex stream-
lines. The stagnation points are defined by the equation
πx/w = 2 tanh(πx/w), giving x/w = ±0.61.... This is
in accord with the flow shown in Fig. 2a, where arrows
mark the streamlines nearest to the separatrices.

The potential is obtained by solving Eq.(3) which gives

φ(x, y) = α

∞∫
−∞

dkeikx
k sinh kỹ

cosh kw
2

=
απ2

w2
Re

coshπz

sinh2 πz
, (15)

where α = Iη/π(ne)2 and z = (x + iy)/w. Amusingly,
this result can also be obtained from the solution for
the source and drain in the halfplane, φ(z′) = Re

[
(z′ −

1)−2−(z′+1)−2
]
, by mapping it onto the strip. Both the

potential and the flow, taken near each contact, mimic
those found for a point source in the halfplane.

The topology of the flow can change drastically upon
altering the boundary conditions. As we now show,
the flow found for the no-stress case undergoes a global
change upon switching to the no-slip boundary condi-
tions. This behavior is a manifestation of the funda-
mental nonlocality of viscous flows discussed above. The
stream function for the no-slip case is of the form [21]:

ψ(x, y) =
Ĩ

2π

∞∫
−∞

dk

ik
eikx

c1 cosh kỹ − c2kỹ sinh kỹ

kw + sinh kw
(16)

where c1 = kw cosh kw
2 + 2 sinh kw

2 , c2 = 2 sinh kw
2 . From

Fig.2b it may appear that the streamlines form radial
patterns near contacts identical to those in Fig.2a, with
−Ĩ/2 < ψ < Ĩ/2. However, a closer inspection re-
veals additional streamlines corresponding to the bound-
ary values ψ = ±Ĩ/2. These streamlines leave the con-
tacts horizontally and then curve inward. Their form
can be obtained explicitly by evaluating ψ in the domain
y � x� w. Treating kw as a large parameter, we write

πψ(x, y)/Ĩ ≈ arctan(x/y) + xy/(x2 + y2) + 2xy/w2

≈ π/2− 2y3/3x3 + 3xy2/w3. (17)

The terms linear in y/x cancel, which allows for a sec-
ond streamline with the same ψ value as at the edge,
ψ(x, y) = Ĩ/2. This line, described by y = 9x4/2w3

at small y, is a separatrix between the source-to-drain
streamlines and the vortex streamlines. This is illus-
trated in Fig.2b where arrows mark the streamlines near-
est to the separatrices. The vortex streamlines fill the
space between the separatrix and the strip edge, extend-
ing arbitrarily close to the contacts.

To confirm that the streamlines below the separatrix
turn around without reaching the source, we analyze the
velocity vx = −∂ψ∂y . For y � x� w, approximating∫ ∞
0

k

2
dk sin kx(ye−ky−w sinh kye−kw) ≈ y2

x3
− xy
w3

, (18)

we see that the horizontal velocity reverses its sign at the
‘demarcation’ line y = x4/w3 (lying below the separatrix)
which means that upon crossing this line the streamlines
turn around. Below this line, the second term in (18)
dominates, making the flow along the edge directed to-
wards the contact. In the limit w → ∞, when the strip
turns into halfplane, the demarcation line disappears. In
this case there are no closed streamlines and no backflow.

The qualitative difference between the no-slip and no-
stress boundary conditions is manifested in different de-
pendence of the flows on the sample shape. If we replace
the infinite strip by a rectangle 0 < y < w, −L < x < L,
then the stagnation points and separatrices disappear in
the no-stress case for sufficiently small aspect ratio L/w.
However, in the no-slip case, the separatrices survive and
the vortices persist at any aspect ratio [26].

Potential distribution, obtained from Eq.(3), looks
similar in both cases and does not reflect the presence
of the separatrices and backflow, see Fig.2b. It changes
sign twice on the nodal lines that make the angles ±π/4
with the edge, as in a halfplane. We conclude that, while
there is always a backflow along the edges in a wide strip,
L � w, this backflow (however spectacular by itself) is
of little relevance for the negative voltage measured in
Ref.[17]. Likewise, the voltage singularities near the con-
tacts reflect diverging streamlines and have nothing to
do with the vortices or separatrices (see Fig.1).

In summary, we demonstrated that it is the negative
electric field rather than a backflow that is a true uni-
versal signature of viscous electron transport. While the
negative field is inherently related to the vorticity of cur-
rent flow, it requires neither backflow nor vortices. Fur-
ther, there is no one-to-one relation between the spatial
distributions of currents and potentials, making it non-
trivial to infer the current flow from the measured po-
tential. An answer is provided by application of a weak
magnetic field, which effects a change in the potential
distribution proportional to the current stream function.
This opens door to direct measurements of viscous elec-
tron flow patterns by the well-developed charge and po-
tential sensing techniques[23, 24].
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