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We determine the shear viscosity of the ultracold Fermi gas at unitarity in the normal phase using
hydrodynamic expansion data. The analysis is based on a generalized fluid dynamic framework
which ensures a smooth transition between the fluid dynamic core of the cloud and the ballistic
corona. We use expansion data taken by Joseph et al. [1] and measurements of the equation of state
by Ku et al. [2]. We find that the shear viscosity to particle density ratio just above the critical
temperature is η/n|Tc

= 0.41 ± 0.11. We also obtain evidence that the shear viscosity to entropy
density ratio has a minimum slightly above Tc with η/s|min = 0.50± 0.10.

Introduction: The dilute Fermi gas at unitarity is a
very attractive physical system for studying the trans-
port properties of strongly correlated quantum fluids [3–
5]. From a theoretical point of view the unitary Fermi
gas is a parameter-free, scale invariant, and intrinsically
quantum mechanical many-body system. A lot of inter-
est has centered on the question of how close the viscosity
to entropy density ratio of this system comes to the pro-
posed string theory bound η/s = h̄/(4πkB) [6]. Experi-
mentally, the unitary Fermi gas can be realized in dilute
atomic gases using Feshbach resonances [7, 8]. The ex-
perimental control provided by Feshbach resonances im-
plies that we can study the transition from the strongly
correlated unitary Fermi gas to weakly coupled Bose and
Fermi gases.

In this work we focus on the problem of extracting
the shear viscosity of the unitary Fermi gas from experi-
ments with trapped ultracold gases [1, 9–16]. Our main
interest is in the low temperature regime, where the den-
sity dependence of the shear viscosity is relevant, and
the minimum of η/s is likely to be achieved. There are
two main types of experiments that are relevant to this
problem. The first class involves measuring the damping
rate of collective excitations, and the second focuses on
the expansion of the cloud after removing the trapping
potential. From a theoretical perspective the damping
experiments would appear to be more attractive, because
even a very small viscosity leads to a clear signature in
the exponential decay of the collective mode. In prac-
tice, however, the expansion experiments take place in a
cleaner environment and have achieved greater accuracy.
In an expansion experiment what is observed is the time
evolution of the aspect ratio of the cloud. Hydrodynamic
pressure gradients accelerate the cloud along the short di-
rection, so that the aspect ratio increases as a function of
time. Viscosity counteracts the pressure gradients, and
slows the growth of the aspect ratio. These flow exper-
iments are very similar to elliptic flow experiments in
relativistic heavy ion physics [17–19].

The main difficulty in analyzing these experiments is
that the viscosity η(n, T ) is a local quantity that varies
with the density n and temperature T of the cloud, while
the observed aspect ratio is a global property of the

trapped gas. This means that the dependence of the
data on initial cloud energy, particle number, and expan-
sion time has to be unfolded to determine η(n, T ). An
even more significant problem is that the viscosity is a
parameter that appears in the fluid dynamic description
of the cloud. However, fluid dynamics breaks down in
the dilute, dissipative corona of the gas.

We have recently made significant progress in dealing
with the physics of the dilute corona. We have intro-
duced a new method, anisotropic fluid dynamics [20–22],
that takes into account the effects of non-hydrodynamic
modes. These modes quickly relax in the dense part of
the cloud so that Navier-Stokes fluid dynamics is recov-
ered. In the dilute corona non-hydrodynamic modes en-
sure a smooth transition to a free-streaming, ballistic ex-
pansion. We have checked numerically that anisotropic
fluid dynamics reproduces the Navier-Stokes equation in
the dense limit [20] as well as numerical solutions of the
Boltzmann equation in the dilute regime [23, 24]. We
have also shown that the anisotropic fluid dynamics, com-
bined with the kinetic theory prediction for the shear vis-
cosity η = 15/(32

√
π)(mT )3/2 [25], reproduces the high

temperature expansion data obtained in [13]. Note that
here and in the remainder of the paper we set h̄ and kB
equal to unity.

In this work we extend our studies to lower temper-
ature. For this purpose we fit the expansion data to a
systematic expansion of the viscosity in powers of the
density. We show that the data clearly demand that
the shear viscosity has non-trivial density dependence.
We also show that the density dependence in the normal
phase is quite smooth, and that the existing data place
strong constraints on η/n near Tc. This study requires
several refinements of our previous work. We extend the
fluid dynamic analysis to three dimensional systems with
no axial symmetry. We include an accurate parametriza-
tion of the measured equation of state, and a more gen-
eral functional form of the shear viscosity.

Anisotropic fluid dynamics: In this section we briefly
summarize the anisotropic fluid dynamics method [20].
The fluid dynamical variables that characterize a non-
relativistic fluid in the normal phase are the mass density
ρ, the momentum density ~π = ρ~u, and the energy density
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E . The equations of motion follow from the conservation
laws

D0ρ = −ρ ~∇ · ~u , (1)

D0ui = −1

ρ
∇j (δijP + δΠij) , (2)

D0ε = −1

ρ
∇i

(
uiP + δEi

)
. (3)

Here, we defined the comoving time derivative D0 = ∂0+

~u · ~∇, the energy per mass ε = E/ρ, and the pressure P .
We also introduce the energy density in the rest frame
of the fluid, E0 = E − 1

2ρ~u
2. In order for the equations

to close we have to provide an equation of state P =
P (E0, ρ), and constitutive equations for the dissipative
stresses δΠij and the dissipative energy current δEi . For
the unitary Fermi gas scale invariance implies that P =
2
3E

0.
In the Navier-Stokes approximation the dissipative

stresses are expanded to first order in gradients of the
thermodynamic variables. We get δΠij = −ησij with

σij = ∇iuj +∇jui −
2

3
δij ~∇ · ~u (4)

and δEi = ujδΠij . Scale invariance implies that the bulk
viscosity vanishes. We have also used the fact that in
expansion experiments the effects of heat conduction are
of higher order in the gradient expansion. This is related
to the fact that the initial temperature is constant, and
that the expansion of an ideal gas preserves the isother-
mal nature of the temperature profile [26].

In anisotropic fluid dynamics we treat the components
of the dissipative stress tensor as independent fluid dy-
namical variables. The symmetries of the trap imply that
the stresses are diagonal. We define anisotropic compo-
nents of the pressure, Pa for a = 1, 2, 3, and define

δΠij = diag(∆P1,∆P2,∆P3), (5)

where ∆Pa = Pa−P . We also define anisotropic compo-
nents of the energy density Ea such that E =

∑
a Ea. The

anisotropic components of the energy per mass satisfy
the equation of motion [20]

D0εa = −1

ρ
∇i

[
δiauiP + (δEa)i

]
− P

2ηρ
∆Pa , (6)

where εa = Ea/ρ and (δEa)i = δiaujδΠij . The anisotropic
pressure is related to the anisotropic energy density by
an equation of state. In the case of a scale invariant
fluid we have Pa(E0a) = 2 E0a with E0a = Ea − 1

2ρu
2
a. Then

P = 1
3

∑
a Pa satisfies the isotropic equation of state, and

equ. (6) gives the isotropic equation of energy conserva-
tion equ. (3) when summed over a. In our previous work
we have described a three dimensional fluid dynamics
code that solves equ. (1)-(3) and equ. (6) [20, 26]. This
code is based on the PPM scheme of Colella and Wood-
ward [27, 28].

We have shown that in the limit of small viscos-
ity, η(~∇ · ~u) � P , the anisotropic pressure terms re-
lax to the viscous stress tensor in Navier Stokes theory,
∆Pa = −ησaa. We observe that in the opposite limit,
that of very large viscosity, equ. (6) becomes a conserva-
tion law. This conservation law ensures that anisotropic
fluid dynamics reproduces the free streaming limit. Fi-
nally, we have checked that anisotropic fluid dynamics
provides a very accurate representation of numerical so-
lutions of the Boltzmann equation in the limit that two-
body scattering dominates [24].

In general the viscosity is a function of density and
temperature. In the unitary limit scale invariance
implies that η(n, T ) = (mT )3/2f(nλ3), where λ =
[(2π)/(mT )]1/2 is the de Broglie wave length. In this
work we will expand the function f(x) in powers of the
diluteness of the gas

η(n, T ) = η0(mT )3/2
{

1 + η2
(
nλ3

)
+ η3

(
nλ3

)2
+ . . .

}
.

(7)
We note that the leading term is purely a function of tem-
perature, the first correction is solely a function of den-
sity, and higher order terms depend on increasing powers
of the density. In general this expansion is not expected
to be useful near Tc, but we will show that terms that
scale as (nλ3)2 and higher are surprisingly small.

Experimental parameters: We will analyze the expan-
sion data reported in [1]. This work represents the most
complete set of elliptic flow measurements for the uni-
tary Fermi gas over a wide range of temperatures cur-
rently available. The gas is released from a harmonic
trap Vext = 1

2mω
2
i x

2
i with trap frequencies (ωx, ωy, ωz) =

(2π)(2210, 830, 64.3) Hz. After the optical trap is turned
off there is a residual magnetic bowl characterized by
ωmag = 2π · 21.5 Hz . The total energy per particle of the
gas varies between E/(NEF ) = (0.56 − 1.91). Here, N
is the number of particles and EF ≡ (3N)1/3ω̄, where
ω̄ is the geometric mean of the trap frequencies. The
energy and temperature of the cloud are extracted us-
ing absorption images and an equation of state E0(n, T ).
We describe a parametrization of the equation of state
measured by the MIT group [2] in the Supplemental Ma-
terial, see also [26, 29, 30]. Based on this equation of
state we find that the critical energy where superfluidity
occurs at the center of the trap is E/(NEF ) = 0.70. In
the high temperature limit many relations simplify. For
example, the total cloud energy is given by E = 3NT .
We will characterize the initial temperature using the di-
mensionless ratio T/TF , where TF = EF .

Scaling of the aspect ratio with the initial energy: Ex-
pansion experiments measure the time evolution of the
aspect ratio AR(t) for different initial energies and parti-
cle numbers. The experiment of Joseph et al. [1] focuses
on the ratio σx/σy, which reaches its asymptotic behav-
ior more quickly than σx/σz or σy/σz. The radii σi are
determined from a Gaussian fit to two-dimensional ab-
sorption images. As noted in [23] it is important to follow
this definition when analyzing the data using transport
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FIG. 1: Aspect ratio AR = σx/σy at t∗ = 1.2 msec as a
function of the energy E/(NEF ) of the cloud. Data (gray
points) compared to hydrodynamic fits based on the equation
of state of a free gas. The solid red line corresponds to the
shear viscosity η = η0(mT )3/2 predicted by kinetic theory,
and the dashed and dotted line show the ±25% and ±50%
range in η0. The thick green line is the best fit to the high
energy data, corresponding to η0 = 0.301.
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FIG. 2: Aspect ratio AR = σx/σy at t∗ = 1.2 msec as a func-
tion of the energy E/(NEF ) of the cloud. Data (gray points)
compared to hydrodynamic fits based on the measured equa-
tion of state. The red short-dashed line shows the high tem-
perature fit, the blue dashed line includes density corrections,
and the green solid line contains a density squared term.

theory. In particular, there is a significant difference be-
tween the ratio of rms radii,

√
〈x2〉/

√
〈y2〉, and the ratio

of Gaussian fit radii, σx/σy. This is the case even if the
initial density distribution is a Gaussian.

Joseph et al. observed that the main information about
the density and temperature dependence of η(n, T ) is not
carried by the time dependence of AR(t) for fixed initial
energy, but by the dependence of AR(t∗) at a fixed time t∗

on the initial energy. In Fig. 1 we show AR(t∗) = σx/σy
as a function of E/(NEF ) at t∗ = 1.2 msec. Note that
the plot covers a fairly narrow range in AR. Individual
data points are more accurate than previously published
data, which spanned a much larger range in aspect ratio.

A difficulty in interpreting the results is that the data
points correspond to a range of particle numbers. The
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FIG. 3: In this figure we show the reconstructed ratio η/n as
a function of T/T loc

F for a homogeneous gas. The local Fermi
temperature is defined as T loc

F = k2F /(2m) where kF is defined
via the density of the gas, n = k3F /(3π

2). The red line shows
the density expansion together with the error band described
in the text. The curves terminate at Tc. The gray dots show
the reconstruction obtained in [1], and the dashed line shows
the T -matrix calculation of Enss et al. [31].

data are clustered around a mean N̄ = 1.94 · 105, and
the variance in N1/3, which is relevant to the effective
viscosity, is about 7%. We show all the data points on
the same plot, but when performing hydrodynamic fits
we use the correct number of particles for each individual
data point.

Figure 1 shows a fit to the data based on the high
temperature theory only. This means that we use the
free gas equation of state, and only the first coefficient,
η0, in the virial expansion of the shear viscosity. The best
fit to the high temperature data gives η0 = 0.301 which
is somewhat higher than the value η0 = 0.264 predicted
by kinetic theory. The best fit value shifts slightly if the
full equation of state is used, but the shape of AR(t∗)
as a function of E/(NEF ) does not change. We observe
that the data at lower energy clearly demand a more
complicated functional form of the shear viscosity.

Figure 2 shows a fit to the data above the superfluid
transition based on the full equation of state and an ex-
pansion of the shear viscosity up to second order in den-
sity. The best fit is

η0 = 0.265± 0.02 , η2 = 0.060± 0.02 , (8)

and η3 = −(2 ± 8) · 10−4. We observe that the n2 co-
efficient is consistent with zero within error bars. We
also find that the fit is stable with respect to including
higher order terms in n. The χ2/Ndof of the fit is of
order unity, indicating that this simple model provides
a very good representation of all the data in the entire
regime above the superfluid phase transition. We note
that η0 agrees to better than 1% with the kinetic theory
prediction η0 = 0.264.

Conclusions: Our determination of η/n for the homo-
geneous Fermi gas is shown in Figs. 3 and 4. The result
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FIG. 4: Same as Fig. 3, zooming in on the low temperature
regime. Our analysis (red band) is compared to the results
(gray points) obtained in [1], the T -matrix calculation (dashed
line) of Enss et al. [31], and the lattice calculation (green
band) of Wlazlowski et al. [32].
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FIG. 5: Low temperature behavior of the shear viscosity to
entropy density ratio η/s as a function of T/T loc

F . Our anal-
ysis (red band) is compared to the high and low temperature
predictions from kinetic theory, see [25, 33].

is shown as a function of T/T loc
F , where T loc

F = k2F /(2m)
is the local Fermi temperature of the gas. The best fit to
the data, shown as the thick red line in Fig. 3, is

η/n = 2.773x3/2 + 0.251− 0.0013x−3/2 , (9)

where x = T/T loc
F . The coefficients in equ. (9) are given

by the central values of η0, η1, η2 normalized by the den-
sity n. The local Fermi momentum kF is defined in terms
of the density of the gas, n = k3F /(3π

2). We show the
reconstruction for temperatures above the critical tem-
perature Tc = 0.167(13)T loc

F [2]. We find that the value
of the viscosity at Tc is η/n|Tc

= 0.41 ± 0.11. We have
not attempted to reconstruct the shear viscosity below
Tc, since a proper treatment of this regime requires su-
perfluid hydrodynamics.

For comparison the gray data points show the recon-
structed values of η/n obtained in the experimental work

of Joseph et al. [1]. These results are based on the same
expansion data, but involve a number of assumptions
[35]. The main assumption is that there is a critical ra-
dius Rcrit

i so that the atomic cloud inside this radius
can be described as a viscous fluid, and the particles
outside the radius are a non-interacting gas. The crit-
ical radius is assumed to be a constant fraction of the
cloud size. The overall constant is adjusted to reproduce
the expected behavior of the high temperature viscosity,
η ∼ η0(mT )3/2. This implies that the agreement of the
data points with kinetic theory for large T/T loc

F is not a
result, but an input. In contrast, the agreement of our
reconstruction with kinetic theory is a non-trivial result.
There is some discrepancy between the two reconstruc-
tions in the regime T = (0.2−1.0)T loc

F . In this regime our
result for η/n is systematically lower. This makes sense
if one assumes that as the temperature is lowered and the
viscosity drops the effective fluid radius increases. This
implies that assuming a constant radius of the fluid core
leads to an overestimate of the viscosity. It is interesting
that directly at Tc the two reconstructions agree.

We also show the T -matrix calculation of Enss et
al. [31], which agrees quite well with our reconstructed
viscosity near Tc. It will be interesting to study the phys-
ical consequences of this result, for example possible im-
plications for quasi-particle models. We also show the
lattice calculation of Wlazlowski et al. [32]. The calcula-
tion does not match the shape of our reconstruction, and
has a substantially smaller η/n|Tc

.

Finally, Fig. 5 shows the ratio of shear viscosity to
entropy density, based on our reconstruction of η/n and
the measurement of s/n by the MIT group [2]. The result
is compared to high and low temperature predictions for
η/s in kinetic theory [25, 33]. We find a shallow minimum
of η/s|min = 0.50±0.10 slightly above Tc. The minimum
is related to the fact that the entropy per particle drops
siginificantly as Tc is approached from above, whereas no
structure is seen in η/n. We note that at present we can
only weakly exclude (at about 1σ) a minimum in η/s at
or below Tc. A minimum in η/s above Tc was predicted
in [34], but is in tension with the Monte Carlo data in
[32].
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J. E. Thomas, “Strongly Correlated Quantum Fluids:
Ultracold Quantum Gases, Quantum Chromodynamic
Plasmas, and Holographic Duality,” New J. Phys. 14,
115009 (2012) [arXiv:1205.5180 [hep-th]].
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