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We put forward a new ab-initio approach that seamlessly bridges the structure, clustering, and
reactions aspects of the nuclear quantum many-body problem. The configuration interaction tech-
nique combined with the Resonating Group Method based on a harmonic oscillator basis allow us
to treat the reaction and multi-clustering dynamics in a translationally invariant way and preserve
the Pauli principle. Our presentation includes studies of 8,10Be and an exploration of 3α clustering
in 12C.
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The unified description of many-body nuclear struc-
ture and reactions from fundamental, ab-initio, principles
is a central issue in modern nuclear physics, astrophysics,
and mesoscopic quantum physics in general. Challenging
questions about the role of intrinsic degrees of freedom
in nuclear reactions [1, 2], the emergence of rotational
behavior in the continuum [3, 4], the interplay between
structure, reactions, and the single-particle and collective
motion in nuclear states [5, 6], near-threshold cluster-
ing effects [7–10], large-amplitude collective motion and
shape coexistence [11], and the phenomenon of superradi-
ance, where structural clustering is enhanced or reduced
due to reaction dynamics [12], still remain.

The recent decades have seen an outstanding progress
in methods related to both nuclear structure [13–17]
and nuclear reactions [18–23], however a unified treat-
ment of the two remains challenging. For two-body
processes there is a wealth of strategies that solve the
structure-reaction problems: matching solutions [21, 24],
the R-matrix method [25], Hilbert space projection tech-
niques such as the shell model embedded in the con-
tinuum (SMEC) [26] or the continuum shell model
(CSM) [19], the Berggren complex-plane formulation
[27], Lüscher’s finite-volume method [20, 28], or the
HORSE (J-matrix) formalism [29, 30]. However, the
coupling between intrinsic structure and the continuum
of reaction states remains a particularly difficult ques-
tion when it comes to multiple final-state fragments, de-
cay fragments with complex internal structures [2], long-
range interactions [31], competing direct and sequen-
tial decay modes [32, 33], or many open channels that
are equally significant and provide a structural feedback
from the continuum [12]. These problems are not unique
to nuclear physics as they are encountered in many
branches of physics related to open mesoscopic quantum
systems: quantum information [34], electronic transport
[35], quantum optics [36], biological light-harvesting com-
plexes [37], and plasmonic antenna arrays [38], to name
a few.

In this work we put forward a novel strategy that
bridges the ab-initio configuration interaction structure
calculations with reactions through a Resonating Group

Method (RGM) [39]. The RGM provides a general for-
mal strategy for coupling asymptotic reaction states and
cluster degrees of freedom with intrinsic structure needed
to apply methods such as R-matrix, CSM or SMEC
[19, 22, 40, 41]. In order to overcome the previously
mentioned impediments and limitations, we propose to
build RGM multi-cluster channels using a harmonic os-
cillator (HO) basis expansion of the relative motion be-
tween fragments. These intrinsic channel states coupled
with asymptotic solutions provide the needed structure-
reaction interface.

We operate here with the multi-nucleon shell-model-
type wave functions Ψ, which are linear combinations
of Slater determinants of the single particle HO states.
We use the formalism of second quantization, which pre-
serves the antisymmetry and allows us to view the many-
body state as a many-body creation operator that cre-
ates this state from the vacuum; constructions of the type
|Ψ(1)Ψ(2)〉 ≡ Ψ̂†(2)Ψ̂†(1)|0〉 are automatically antisym-
metrized [42].

The HO basis adopted for this work allows for a for-
mal separation of the center-of-mass (CM) degrees of
freedom, leading to a translationally invariant approach.
In both traditional shell model and no-core shell model
(NCSM) approaches, where basis states are restricted
by the maximum number of oscillator excitation quanta
Nmax, the HO Hamiltonian for the CM can be used to
factorize the CM degree of freedom in the many-body
wave function [43], leading to physical states of interest
being in the form

Ψ = φ000(R) Ψ′. (1)

Here φn`m (R) denotes the HO wave function with n
nodes, angular momentum ` and magnetic projection m ,
while Ψ′ is a translationally invariant function of relative
coordinates only. For example, the Nmax = 0 structure of
an α-particle amounts to representing the wave function
with a single Slater determinant containing two protons
and two neutrons in the lowest 0s HO shell, sometimes
called an s4 structure. We denote this by α[0], where the
Nmax value appears in square brackets; we use this nota-
tion for the remainder of the text. The CM motion of this
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α[0] structure is described by the lowest oscillator state
φ000(R). Given the compact nature of the α particle,
the translationally invariant part of the simple α[0] wave
function represents over 90% of the physical α; assuming
proper selection of the HO frequency around ~Ω ≈ 25 to
27 MeV. The α[0] approximation is commonly used in
α clustering studies [42, 44–46], as it allows for an alge-
braic treatment that utilizes the SU(3) symmetry of the
isotropic HO.

In order to construct reaction channels in which clus-
ters are moving relative to each other and the overall
translational invariance is respected, we build “boosted”
states

Ψn`m = φn`m (R) Ψ′, (2)

where the CM can be in any desired oscillator state,
while the intrinsic part Ψ′ remains unchanged. We do
this numerically without any approximations or trunca-
tions using the CM creation and annihilation operators,
B† and B correspondingly. These vector operators are
parts of the usual isoscalar dipole operator. Start-
ing from Ψ ≡ Ψ000 in eq. (1) the number of nodes n
can be increased with a scalar product B† · B†; namely
|Ψn+1`m〉 ∝ (B† · B†)|Ψn`m〉, while the CM angular mo-
mentum vector ` is proportional to a vector product
B† × B; and in practice a series of aligned ` = m states
is obtained using the raising component B†m=+1. The
total number of oscillator excitation quanta in (2) is
shared between the CM and intrinsic degrees of freedom
N = NCM + N ′, where NCM = 2n + `, see also Ref.
[47]. Many previous works [42, 45, 48, 49], employed the
α[0] approximation for the α-particle, in which case the
boosted states in eq. (2) can be expressed analytically in
the SU(3) HO basis.

Consider a reaction process A1 + A2 = A where
A1 and A2 are two fragments forming the parent
system A. We construct, and correspondingly define,
each reaction channel basis state |Φn`J〉 as a linear
combination of boosted, fully antisymmetrized states
|Ψn1`1m1

(1) Ψn2`2m2
(2)〉 coupling their CM motions so

that the two clusters A1 and A2 are in a relative HO
state φn`m (ρ) where ρ = R1 − R2, and the overall CM
variable of the state is in the NCM = 0 HO state that co-
incides with the CM state of the parent A. This coupling
can be done using oscillator (Talmi-Moshinsky) brackets.
The orbital angular momenta of CM motion are coupled
as `1 + `2 = `, the total nuclear spins of each fragment
A1,2 are coupled as J1 + J2 = S, and finally the com-
bined intrinsic nuclear spin S and the angular momentum
of relative motion ` give the total angular momentum of
the channel ` + S = J . We can write the basis channel
state in abbreviated form as

|Φn`J〉 =

∣∣∣∣{φ000(R)φn`m (ρ) {Ψ′(1)Ψ′(2)}S

}
J

〉
, (3)

parent channel Nc |〈Ψ|Φn`J〉| 〈Φn`J |Φn`J〉
16O[0] 12C[(0, 4)] + α[0] 4

√
8/27 8/27

16O[0] 12C[p8
3/2] + α[0] 4 0.135 0.018

16O[0] 12C[p8
3/2] + α[4] 4 0.130 0.017

8Be[(4, 0)] α[0] + α[0] 4
√

3/2 3/2
8Be[0] α[0] + α[0] 4 1.160 3/2
8Be[4] α[0] + α[0] 4 0.984 3/2
8Be[4] α[0] + α[0] 6 0.644 15/8
8Be[4] α[2] + α[2] 4 0.981 1.492

12C[p8
3/2] α[0] + α[0] + α[0] 8 1/4 81/80

16O[0] (α[0])4 12
√

3/10 3/10

TABLE I: Table shows absolute values of spectroscopic am-
plitudes and channel norms for various types of parent states
and basis channels. All channels here have ` = 0 and the
number of quanta in relative motion of the two fragments is
denoted by Nc = 2n+`. For each nucleus square brackets indi-
cate the structure used for the corresponding fragment which
could include spectroscopic notation, pair of SU(3) quantum
numbers, or Nmax as a single integer.

the commutation rules of second quantization used in the
construction process ensure full antisymmetrization.

The wave functions |Φn`J〉 provide a convenient ba-
sis set for expanding the true cluster relative motion in
terms of harmonic oscillator functions φn`m (ρ). The over-
laps 〈Ψ|Φn`J〉 are translationally invariant by construc-
tion and their total norm SF =

∑
n |〈Ψ|Φn`J〉|2, known

as the traditional spectroscopic factor, provides the sim-
plest spectroscopic clustering characteristic of states (1)
of parent A, clustering into A1 +A2 fragments.

In Table I we show select examples of spectroscopic
overlaps for various systems and channels. The algebraic
SU(3) examples and closed shell limits confirm known an-
alytic results [44, 50, 51]. The basis channels Φn`J are not
normalized, see last column of Table I, nor generally or-
thogonal, which makes it hard to associate amplitudes in
Table I and the corresponding traditional spectroscopic
factors with observables. Thus, the renormalized spec-
troscopic factors, Ref. [52], obtained as a result of the
orthonormalization of the basis channels are commonly
discussed [6, 42].

There is no substantial change in our approach for
channels with more than two fragments in the final state;
eq. (3) can be generalized using the same boosting pro-
cedure where CM motion is controlled via Jacobi coordi-
nates or by using a generalization of the oscillator brack-
ets obtained numerically using diagonalization, similar to
the method in Ref. [53]. Multi-α channel examples are
included in Table I .

Next we consider a full dynamical problem within the
RGM framework. Here, the actual channel wave function
for a given set of asymptotic quantum numbers (which in
the following we abbreviate with a single label `) is given
as an expansion of basis channel states (3), enumerated
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with n

F`(ρ) =
∑
n

χnΦn`. (4)

The form of this expansion is determined variationally
using the generalized eigenvalue problem∑

n

H(`)
nn′χn′ = E

∑
n

N (`)
nn′χn′ , (5)

where

H(`)
nn′ = 〈Φn`|H|Φn′`〉 and N (`)

nn′ = 〈Φn`|Φn′`〉. (6)

The channel normalization requires
∑

nN
(`)
nn′χ∗nχn′ = 1.

Now, the Hamiltonian is used to establish the reaction
channels dynamically. For two-body reactions the proce-
dure amounts to an expansion of the relative motion in
a HO basis, where the expansion index n is the number
of nodes in the relative motion. For large n, which are
associated with large relative separation of the two frag-
ments, the basis channels Φn` become orthogonal and the
matrix elements of the relative motion Hamiltonian are
given by Coulomb and kinetic energy matrix elements
that are known analytically.

In general, these intermediate-range RGM solutions
should be properly matched or combined in the Hilbert
space with the asymptotic ones through other techniques
such as R-matrix or CSM. For long-lived resonances the
continuum coupling is weak and does not modify the
structure, in this limit perturbation theory is applica-
ble, therefore Fermi’s golden rule and the spectroscopic
amplitudes characterize decay and reaction observables.

Let us demonstrate the approach using a well-known
8Be→ α + α example which, due to numerous previous
theoretical studies [7, 23, 54, 55], emerged as a bench-
mark for clustering methods. In addition, 8Be is a stark
example of collectivity and rotations in the continuum
[3, 56] where, as being well established experimentally
in many light nuclei [6, 8, 9, 57], strongly clustered ro-
tational bands survive the complexity of many-body dy-
namics. In the limit where a channel is constructed from
two α particles with structure limited to α[0] the norm
kernel is diagonal and non-zero only when 2n+` ≥ 4 and
` is even; it can be computed analytically [58],

N (`)
nn′ = δnn′2(1− 22−2n−`). (7)

An example with 4 quanta in relative motion (Nc = 2n+
`) is included in Table I. Result (7) highlights the bosonic
nature of the α particle: only even ` are allowed and
with growing number of quanta in the relative motion,

N (`)
nn ≈ 2.
In Figure 1 we show the spectrum of the RGM Hamil-

tonian (5) computed using the SRG softened N3LO
nucleon-nucleon interaction with a softening parameter
λ=1.5 fm−1, [59, 60]. The results from the corresponding
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FIG. 1: (Color online) Spectrum of RGM Hamiltonian with
the SRG softened N3LO interaction (λ = 1.5 fm−1) and ~Ω =
25 MeV for a 2α system. Zero on the energy scale is set by the
α + α breakup threshold of the corresponding model. Levels
are marked by spin and parity and by an absolute binding
energy in units of MeV. The α binding energies for the α[0]
and NCSM (α[4]) calculations are -26.08 MeV and -28.56 MeV
respectively. Inset shows the relative wave function of the two
α clusters.

NCSM calculation 8Be[Nmax = 4] and the experimental
spectrum are included for comparison. The radial part of
the RGM wave function for different values of ` is shown
in the inset. The channel states are limited to a max-
imum number of relative quanta Nc ≤ 12. Tests with
different Hamiltonians, with different values of ~Ω and
with various truncations by oscillator quanta in the rel-
ative α − α motion (Nc), as well as using more complex
NCSM configurations for the α, indicate that this is a
generic result. Additional details and comparisons can
be inferred from data in Table II.

In comparison to experiment, the relative energies and
the rotational band states 0+, 2+, and 4+, are well repro-
duced. The full no-core calculation, which in general in-
cludes cluster channels, naturally leads to lower absolute
binding energy but our results suggest that these states
in 8Be are indeed nearly indistinct from α+ α RGM so-
lutions. This structural information is highlighted by the
large overlaps between parent states Ψ and RGM chan-
nels F` shown in Table II.

For the example in Fig. 1 the validity of expansion (4)
with 2n + ` = Nc ≤ 12 is expected up to about ρ ∼ 4
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parent Jπ channel |〈Ψ|F`〉|
8Be[4] 0+ α[0] + α[0] 0.905
8Be[4] 2+ α[0] + α[0] 0.898
8Be[4] 4+ α[0] + α[0] 0.874
8Be[4] 0+ α[2] + α[2] 0.961
8Be[4] 2+ α[2] + α[2] 0.957
8Be[4] 4+ α[2] + α[2] 0.943
10Be[4] 0+ 6He[4] + α[0] 0.820
10Be[4] 2+ 6He[4] + α[0] 0.796
10Be[4] 4+ 6He[4] + α[0] 0.638
12C[4] 0+

1 α[0] + α[0] + α[0] 0.841
12C[4] 0+

2 α[0] + α[0] + α[0] 0.229

TABLE II: Select absolute values of spectroscopic amplitudes.
Notation same as those in Tab. I. Here, Nc ≤ 12 for all
models.

fm. Beyond that, the norm kernel transforms into that of
independent particles and, assuming that the resonance
is narrow, we should match this to a wave function of
two α particles with a relative motion described by an
outgoing Coulomb wave. Our estimates for the width
based on the standard techniques, see Ref. [33, 61] and
references therein, give 8.7 eV, 1.3 MeV and 2.1 MeV for
a channel radius ρc = 3.6 fm; the corresponding experi-
mental widths are 5.6 eV, 1.5 MeV, and 3.5 MeV for the
0+, 2+, and 4+ resonances, respectively. This value for
ρc is selected to be in the middle of the area where our
results are not sensitive to changes in the channel radius.

We utilize the same approach with the same parame-
ters to examine the ground state cluster rotational band
of 10Be, also shown in Table II. The remarkable sur-
vival of rotations in the continuum displayed in this nu-
cleus through clustering bands that persist despite the
presence of weakly bound valence neutrons have been
highlighted by recent experiments [57, 62]. Our results
reaffirm this phenomenon and open a path for its further
theoretical investigation.

Finally, we discuss the 3α nature of bound and decay-
ing states in 12C. Various cluster geometries have been
proposed for 12C states [13, 63, 64], pointing to the major
role α clustering plays in this nucleus and correspond-
ingly for the formation of elements in nature. Here for
the first excited 0+ (Hoyle) state the fraction of the di-
rect decay, currently believed to be less then 10% of the
total, and its competition with the sequential, via 8Be,
one is of particular interest [65, 66].

We employ the RGM procedure with three identical
α particles, each in an α[0] configuration, with up to 12
quanta in relative motion and the same Hamiltonian as
before. The results in Table II show the spectroscopic
amplitudes for the ground state and for the first excited,
0+2 state, which could be a prototype of the Hoyle state.

The unconstrained RGM wave function defines initial

amplitudes for all types of asymptotic three-α solutions.
The amplitude for the sequential decay process, proceed-
ing via ground state of 8Be, can be evaluated by con-
structing the constrained 8Be+α channel separately, and
projecting it out. For the 0+2 state the magnitude of the
sequential decay amplitude is 89% of the total, with re-
maining 11% corresponding to all other processes that
do not proceed via the 8Be ground state. These am-
plitudes, their interference, final state interactions, and
phase space lead to observables, see ref. [31] and refer-
ences therein.

To summarize, in this work we put forward a new ap-
proach that targets clustering reaction dynamics in light
nuclei from ab-initio principles. Our approach is based
on the configuration interaction technique combined with
the Resonating Group Method, involves antisymmetriza-
tion over all nucleons, is translationally invariant, appli-
cable to various types of clustering, and under appropri-
ate approximations reduces to well-established previously
used techniques. Studies of 8Be show consistency of our
results with other methods and good agreement with ex-
perimental data. We demonstrate the emergence and
stability of the in-continuum rotational bands in beryl-
lium isotopes. Starting from first principles, we conduct
a triple α clustering study of 12C which is unbiased to-
wards direct or sequential decay processes. As discussed
throughout the text we hope that our work will set an
important milestone in the physics connecting structure
and reactions. Further ongoing comparisons with exper-
imental data, advanced numerical studies, studies of dif-
ferent hamiltonians and different approximations should
provide an invaluable insight on the physics of clustering
phenomena in atomic nuclei and quantum many-body
systems in general.

We are grateful to Yu. Tchuvil’sky, J. Vary, and T.
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This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Nuclear
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