

## CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

## Dijet imbalance measurements in Au+Au and pp collisions at sqrt[s\_{NN}]=200 GeV at STAR

L. Adamczyk *et al.* (STAR Collaboration) Phys. Rev. Lett. **119**, 062301 — Published 10 August 2017 DOI: 10.1103/PhysRevLett.119.062301

## <sup>1</sup> Di-Jet Imbalance Measurements in Au+Au and p+p collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

L. Adamczyk,<sup>1</sup> J. K. Adkins,<sup>19</sup> G. Agakishiev,<sup>17</sup> M. M. Aggarwal,<sup>31</sup> Z. Ahammed,<sup>50</sup> I. Alekseev,<sup>15, 26</sup> 3 D. M. Anderson,<sup>42</sup> R. Aoyama,<sup>3</sup> A. Aparin,<sup>17</sup> D. Arkhipkin,<sup>3</sup> E. C. Aschenauer,<sup>3</sup> M. U. Ashraf,<sup>45</sup> A. Attri,<sup>31</sup> 4 G. S. Averichev,<sup>17</sup> X. Bai,<sup>7</sup> V. Bairathi,<sup>27</sup> R. Bellwied,<sup>44</sup> A. Bhasin,<sup>16</sup> A. K. Bhati,<sup>31</sup> P. Bhattarai,<sup>43</sup> J. Bielcik,<sup>10</sup> 5 J. Bielcikova,<sup>11</sup> L. C. Bland,<sup>3</sup> I. G. Bordyuzhin,<sup>15</sup> J. Bouchet,<sup>18</sup> J. D. Brandenburg,<sup>36</sup> A. V. Brandin,<sup>26</sup> D. Brown,<sup>23</sup> 6 I. Bunzarov,<sup>17</sup> J. Butterworth,<sup>36</sup> H. Caines,<sup>54</sup> M. Calderón de la Barca Sánchez,<sup>5</sup> J. M. Campbell,<sup>29</sup> D. Cebra,<sup>5</sup> 7 I. Chakaberia,<sup>3</sup> P. Chaloupka,<sup>10</sup> Z. Chang,<sup>42</sup> A. Chatterjee,<sup>50</sup> S. Chattopadhyay,<sup>50</sup> J. H. Chen,<sup>39</sup> X. Chen,<sup>21</sup> 8 J. Cheng,<sup>45</sup> M. Cherney,<sup>9</sup> W. Christie,<sup>3</sup> G. Contin,<sup>22</sup> H. J. Crawford,<sup>4</sup> S. Das,<sup>13</sup> L. C. De Silva,<sup>9</sup> R. R. Debbe,<sup>3</sup> 9 T. G. Dedovich,<sup>17</sup> J. Deng,<sup>38</sup> A. A. Derevschikov,<sup>33</sup> L. Didenko,<sup>3</sup> C. Dilks,<sup>32</sup> X. Dong,<sup>22</sup> J. L. Drachenberg,<sup>20</sup> 10 J. E. Draper,<sup>5</sup> C. M. Du,<sup>21</sup> L. E. Dunkelberger,<sup>6</sup> J. C. Dunlop,<sup>3</sup> L. G. Efimov,<sup>17</sup> N. Elsey,<sup>52</sup> J. Engelage,<sup>4</sup> 11 G. Eppley,<sup>36</sup> R. Esha,<sup>6</sup> S. Esumi,<sup>46</sup> O. Evdokimov,<sup>8</sup> J. Ewigleben,<sup>23</sup> O. Eyser,<sup>3</sup> R. Fatemi,<sup>19</sup> S. Fazio,<sup>3</sup> P. Federic,<sup>11</sup> 12 J. Fedorisin,<sup>17</sup> Z. Feng,<sup>7</sup> P. Filip,<sup>17</sup> E. Finch,<sup>47</sup> Y. Fisyak,<sup>3</sup> C. E. Flores,<sup>5</sup> L. Fulek,<sup>1</sup> C. A. Gagliardi,<sup>42</sup> D. Garand,<sup>34</sup> 13 F. Geurts,<sup>36</sup> A. Gibson,<sup>49</sup> M. Girard,<sup>51</sup> L. Greiner,<sup>22</sup> D. Grosnick,<sup>49</sup> D. S. Gunarathne,<sup>41</sup> Y. Guo,<sup>37</sup> A. Gupta,<sup>16</sup> 14 S. Gupta,<sup>16</sup> W. Guryn,<sup>3</sup> A. I. Hamad,<sup>18</sup> A. Hamed,<sup>42</sup> R. Haque,<sup>27</sup> J. W. Harris,<sup>54</sup> L. He,<sup>34</sup> S. Heppelmann,<sup>32</sup> 15 S. Heppelmann,<sup>5</sup> A. Hirsch,<sup>34</sup> G. W. Hoffmann,<sup>43</sup> S. Horvat,<sup>54</sup> X. Huang,<sup>45</sup> B. Huang,<sup>8</sup> H. Z. Huang,<sup>6</sup> T. Huang,<sup>28</sup> 16 P. Huck,<sup>7</sup> T. J. Humanic,<sup>29</sup> G. Igo,<sup>6</sup> W. W. Jacobs,<sup>14</sup> A. Jentsch,<sup>43</sup> J. Jia,<sup>3,40</sup> K. Jiang,<sup>37</sup> S. Jowzaee,<sup>52</sup> E. G. Judd,<sup>4</sup> 17 S. Kabana,<sup>18</sup> D. Kalinkin,<sup>14</sup> K. Kang,<sup>45</sup> K. Kauder,<sup>52</sup> H. W. Ke,<sup>3</sup> D. Keane,<sup>18</sup> A. Kechechyan,<sup>17</sup> Z. Khan,<sup>8</sup> 18 D. P. Kikoła,<sup>51</sup> I. Kisel,<sup>12</sup> A. Kisiel,<sup>51</sup> L. Kochenda,<sup>26</sup> D. D. Koetke,<sup>49</sup> L. K. Kosarzewski,<sup>51</sup> A. F. Kraishan,<sup>41</sup> 19 P. Kravtsov,<sup>26</sup> K. Krueger,<sup>2</sup> L. Kumar,<sup>31</sup> M. A. C. Lamont,<sup>3</sup> J. M. Landgraf,<sup>3</sup> K. D. Landry,<sup>6</sup> J. Lauret,<sup>3</sup> 20 A. Lebedev,<sup>3</sup> R. Lednicky,<sup>17</sup> J. H. Lee,<sup>3</sup> W. Li,<sup>39</sup> X. Li,<sup>41</sup> X. Li,<sup>37</sup> Y. Li,<sup>45</sup> C. Li,<sup>37</sup> T. Lin,<sup>14</sup> M. A. Lisa,<sup>29</sup> Y. Liu,<sup>42</sup> 21 F. Liu,<sup>7</sup> T. Ljubicic,<sup>3</sup> W. J. Llope,<sup>52</sup> M. Lomnitz,<sup>18</sup> R. S. Longacre,<sup>3</sup> X. Luo,<sup>7</sup> S. Luo,<sup>8</sup> G. L. Ma,<sup>39</sup> L. Ma,<sup>39</sup> 22 R. Ma,<sup>3</sup> Y. G. Ma,<sup>39</sup> N. Magdy,<sup>40</sup> R. Majka,<sup>54</sup> A. Manion,<sup>22</sup> S. Margetis,<sup>18</sup> C. Markert,<sup>43</sup> H. S. Matis,<sup>22</sup> 23 D. McDonald,<sup>44</sup> S. McKinzie,<sup>22</sup> K. Meehan,<sup>5</sup> J. C. Mei,<sup>38</sup> Z. W. Miller,<sup>8</sup> N. G. Minaev,<sup>33</sup> S. Mioduszewski,<sup>42</sup> 24 D. Mishra,<sup>27</sup> B. Mohanty,<sup>27</sup> M. M. Mondal,<sup>42</sup> D. A. Morozov,<sup>33</sup> M. K. Mustafa,<sup>22</sup> Md. Nasim,<sup>6</sup> T. K. Nayak,<sup>50</sup> 25 G. Nigmatkulov,<sup>26</sup> T. Niida,<sup>52</sup> L. V. Nogach,<sup>33</sup> T. Nonaka,<sup>46</sup> J. Novak,<sup>25</sup> S. B. Nurushev,<sup>33</sup> G. Odyniec,<sup>22</sup> 26 A. Ogawa,<sup>3</sup> K. Oh,<sup>35</sup> V. A. Okorokov,<sup>26</sup> D. Olvitt Jr.,<sup>41</sup> B. S. Page,<sup>3</sup> R. Pak,<sup>3</sup> Y. X. Pan,<sup>6</sup> Y. Pandit,<sup>8</sup> 27 Y. Panebratsev,<sup>17</sup> B. Pawlik,<sup>30</sup> H. Pei,<sup>7</sup> C. Perkins,<sup>4</sup> P. Pile,<sup>3</sup> J. Pluta,<sup>51</sup> K. Poniatowska,<sup>51</sup> J. Porter,<sup>22</sup> M. Posik,<sup>41</sup> 28 A. M. Poskanzer,<sup>22</sup> N. K. Pruthi,<sup>31</sup> M. Przybycien,<sup>1</sup> J. Putschke,<sup>52</sup> H. Qiu,<sup>34</sup> A. Quintero,<sup>41</sup> S. Ramachandran,<sup>19</sup> 29 R. L. Ray,<sup>43</sup> R. Reed,<sup>23,23</sup> M. J. Rehbein,<sup>9</sup> H. G. Ritter,<sup>22</sup> J. B. Roberts,<sup>36</sup> O. V. Rogachevskiy,<sup>17</sup> J. L. Romero,<sup>5</sup> 30 J. D. Roth,<sup>9</sup> L. Ruan,<sup>3</sup> J. Rusnak,<sup>11</sup> O. Rusnakova,<sup>10</sup> N. R. Sahoo,<sup>42</sup> P. K. Sahu,<sup>13</sup> I. Sakrejda,<sup>22</sup> S. Salur,<sup>22</sup> 31 J. Sandweiss,<sup>54</sup> J. Schambach,<sup>43</sup> R. P. Scharenberg,<sup>34</sup> A. M. Schmah,<sup>22</sup> W. B. Schmidke,<sup>3</sup> N. Schmitz,<sup>24</sup> J. Seger,<sup>9</sup> 32 P. Seyboth,<sup>24</sup> N. Shah,<sup>39</sup> E. Shahaliev,<sup>17</sup> P. V. Shanmuganathan,<sup>23</sup> M. Shao,<sup>37</sup> M. K. Sharma,<sup>16</sup> A. Sharma,<sup>16</sup> 33 B. Sharma,<sup>31</sup> W. Q. Shen,<sup>39</sup> S. S. Shi,<sup>7</sup> Z. Shi,<sup>22</sup> Q. Y. Shou,<sup>39</sup> E. P. Sichtermann,<sup>22</sup> R. Sikora,<sup>1</sup> M. Simko,<sup>11</sup> 34 S. Singha,<sup>18</sup> M. J. Skoby,<sup>14</sup> D. Smirnov,<sup>3</sup> N. Smirnov,<sup>54</sup> W. Solyst,<sup>14</sup> L. Song,<sup>44</sup> P. Sorensen,<sup>3</sup> H. M. Spinka,<sup>2</sup> 35 B. Srivastava,<sup>34</sup> T. D. S. Stanislaus,<sup>49</sup> M. Stepanov,<sup>34</sup> R. Stock,<sup>12</sup> M. Strikhanov,<sup>26</sup> B. Stringfellow,<sup>34</sup> T. Sugiura,<sup>46</sup> 36 M. Sumbera,<sup>11</sup> B. Summa,<sup>32</sup> X. M. Sun,<sup>7</sup> Z. Sun,<sup>21</sup> Y. Sun,<sup>37</sup> B. Surrow,<sup>41</sup> D. N. Svirida,<sup>15</sup> Z. Tang,<sup>37</sup> A. H. Tang,<sup>3</sup> 37 T. Tarnowsky,<sup>25</sup> A. Tawfik,<sup>53</sup> J. Thäder,<sup>22</sup> J. H. Thomas,<sup>22</sup> A. R. Timmins,<sup>44</sup> D. Tlusty,<sup>36</sup> T. Todoroki,<sup>3</sup> 38 M. Tokarev,<sup>17</sup> S. Trentalange,<sup>6</sup> R. E. Tribble,<sup>42</sup> P. Tribedy,<sup>3</sup> S. K. Tripathy,<sup>13</sup> O. D. Tsai,<sup>6</sup> T. Ullrich,<sup>3</sup> 39 D. G. Underwood,<sup>2</sup> I. Upsal,<sup>29</sup> G. Van Buren,<sup>3</sup> G. van Nieuwenhuizen,<sup>3</sup> A. N. Vasiliev,<sup>33</sup> R. Vertesi,<sup>11</sup> F. Videbæk,<sup>3</sup> 40 S. Vokal,<sup>17</sup> S. A. Voloshin,<sup>52</sup> A. Vossen,<sup>14</sup> F. Wang,<sup>34</sup> J. S. Wang,<sup>21</sup> G. Wang,<sup>6</sup> Y. Wang,<sup>45</sup> Y. Wang,<sup>7</sup> G. Webb,<sup>3</sup> 41 J. C. Webb,<sup>3</sup> L. Wen,<sup>6</sup> G. D. Westfall,<sup>25</sup> H. Wieman,<sup>22</sup> S. W. Wissink,<sup>14</sup> R. Witt,<sup>48</sup> Y. Wu,<sup>18</sup> Z. G. Xiao,<sup>45</sup> 42 G. Xie,<sup>37</sup> W. Xie,<sup>34</sup> K. Xin,<sup>36</sup> Q. H. Xu,<sup>38</sup> H. Xu,<sup>21</sup> Y. F. Xu,<sup>39</sup> Z. Xu,<sup>3</sup> J. Xu,<sup>7</sup> N. Xu,<sup>22</sup> S. Yang,<sup>37</sup> Q. Yang,<sup>37</sup> 43 Y. Yang,<sup>28</sup> C. Yang,<sup>37</sup> Y. Yang,<sup>7</sup> Y. Yang,<sup>21</sup> Z. Ye,<sup>8</sup> Z. Ye,<sup>8</sup> L. Yi,<sup>54</sup> K. Yip,<sup>3</sup> I. -K. Yoo,<sup>35</sup> N. Yu,<sup>7</sup> 44 H. Zbroszczyk,<sup>51</sup> W. Zha,<sup>37</sup> X. P. Zhang,<sup>45</sup> J. Zhang,<sup>21</sup> J. Zhang,<sup>38</sup> Z. Zhang,<sup>39</sup> S. Zhang,<sup>37</sup> J. B. Zhang,<sup>7</sup> 45 Y. Zhang,<sup>37</sup> S. Zhang,<sup>39</sup> J. Zhao,<sup>34</sup> C. Zhong,<sup>39</sup> L. Zhou,<sup>37</sup> X. Zhu,<sup>45</sup> Y. Zoulkarneeva,<sup>17</sup> and M. Zyzak<sup>12</sup> 46 (STAR Collaboration) 47 <sup>1</sup>AGH University of Science and Technology, FPACS, Cracow 30-059, Poland 48 <sup>2</sup>Argonne National Laboratory, Argonne, Illinois 60439 49 <sup>3</sup>Brookhaven National Laboratory, Upton, New York 11973 50 <sup>4</sup>University of California, Berkeley, California 94720 51

| 52  | <sup>5</sup> University of California Davis California 95616                                         |
|-----|------------------------------------------------------------------------------------------------------|
| 53  | <sup>6</sup> University of California, Los Anaeles, California 90095                                 |
| 54  | <sup>7</sup> Central China Normal University, Wuhan, Hubei 130079                                    |
| 55  | <sup>8</sup> University of Illinois at Chicago, Chicago, Illinois 60607                              |
| 56  | <sup>9</sup> Creiahton University, Omaha, Nebraska 68178                                             |
| 57  | <sup>10</sup> Czech Technical University in Prague, FNSPE, Prague, 115–19, Czech Republic            |
| 58  | <sup>11</sup> Nuclear Physics Institute AS CR. 250 68 Pranue, Czech Republic                         |
| 59  | <sup>12</sup> Frankfurt, Institute for Advanced Studies FIAS, Frankfurt 60438, Germany               |
| 60  | <sup>13</sup> Institute of Physics. Bhubaneswar 751005. India                                        |
| 61  | <sup>14</sup> Indiana University, Bloomington, Indiana 47408                                         |
| 62  | <sup>15</sup> Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia    |
| 63  | <sup>16</sup> University of Jammu, Jammu 180001, India                                               |
| 64  | <sup>17</sup> Joint Institute for Nuclear Research, Dubna, 141 980, Russia                           |
| 65  | <sup>18</sup> Kent State University, Kent, Ohio 44242                                                |
| 66  | <sup>19</sup> University of Kentucky, Lexington, Kentucky, 40506-0055                                |
| 67  | <sup>20</sup> Lamar University, Physics Department, Beaumont, Texas 77710                            |
| 68  | <sup>21</sup> Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000        |
| 69  | <sup>22</sup> Lawrence Berkeley National Laboratory, Berkeley, California 94720                      |
| 70  | <sup>23</sup> Lehigh University, Bethlehem, PA, 18015                                                |
| 71  | <sup>24</sup> Max-Planck-Institut fur Physik, Munich 80805, Germany                                  |
| 72  | $^{25}$ Michigan State University, East Lansing, Michigan 48824                                      |
| 73  | <sup>26</sup> National Research Nuclear University MEPhI, Moscow 115409, Russia                      |
| 74  | <sup>27</sup> National Institute of Science Education and Research, Bhubaneswar 751005, India        |
| 75  | <sup>28</sup> National Cheng Kung University, Tainan 70101                                           |
| 76  | <sup>29</sup> Ohio State University, Columbus, Ohio 43210                                            |
| 77  | <sup>30</sup> Institute of Nuclear Physics PAN, Cracow 31-342, Poland                                |
| 78  | <sup>31</sup> Panjab University, Chandigarh 160014, India                                            |
| 79  | <sup>32</sup> Pennsylvania State University, University Park, Pennsylvania 16802                     |
| 80  | <sup>33</sup> Institute of High Energy Physics, Protvino 142281, Russia                              |
| 81  | <sup>34</sup> Purdue University, West Lafayette, Indiana 47907                                       |
| 82  | <sup>35</sup> Pusan National University, Pusan 46241, Korea                                          |
| 83  | <sup>37</sup> Rice University, Houston, Texas 77251                                                  |
| 84  | <sup>31</sup> University of Science and Technology of China, Hefei, Anhui 230026                     |
| 85  | <sup>30</sup> Shandong University, Jinan, Shandong 250100                                            |
| 86  | <sup>55</sup> Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800    |
| 87  | <sup>41</sup> State University Of New York, Stony Brook, NY 11794                                    |
| 88  | <sup>42</sup> Temple University, Philadelphia, Pennsylvania 19122                                    |
| 89  | 1exas A&M University, College Station, 1exas 77843<br>43 University of Torus Active Torus (2021)     |
| 90  | University of Texts, Austri, Texts 777                                                               |
| 91  | <sup>45</sup> Toin char University Devision, Texas 7/204                                             |
| 92  | 46 University of Teulopha Teulopha Iberaki Japan                                                     |
| 93  | 47 Southern Connecticut State University New Haven CT 06515                                          |
| 94  | <sup>48</sup> United States Nand Landoney Annapolic Manyland 21/02                                   |
| 95  | <sup>49</sup> Valancia, Universita, Valancia, Indiguna, 21402                                        |
| 96  | <sup>50</sup> Variable Energy Cyclotrop Centre Kolkata 70006/ India                                  |
| 97  | <sup>51</sup> Warsan University of Technology Warsan 00 661 Poland                                   |
| 90  | 52 Wayne State University Detroit Michigan 18901                                                     |
| 99  | <sup>53</sup> World Laboratory for Cosmology and Particle Physics (WLCAPP) Cairo 11571 Equat         |
| 101 | 54 Yale University New Haven Connecticut 06590                                                       |
| .01 | Twie Chinestong, Trea Habell, Connectical 00020                                                      |
|     | We report the first di-jet transverse momentum asymmetry measurements from Au+Au and $p+p$           |
|     | collisions at RHIC. The two highest-energy back-to-back jets reconstructed from fragments with       |
|     | transverse momenta above 2 ${\rm GeV}/c$ display a significantly higher momentum imbalance in heavy- |
|     |                                                                                                      |

transverse momenta above 2 GeV/c display a significantly higher momentum imbalance in heavyion collisions than in the p + p reference. When re-examined with correlated soft particles included, we observe that these di-jets then exhibit a unique new feature – momentum balance is restored to that observed in p + p for a jet resolution parameter of R = 0.4, while re-balancing is not attained with a smaller value of R = 0.2.

PACS numbers: 25.75.-q, 25.75.Bh,12.38.Mh, 21.65.Qr

High-energy collisions of large nuclei at the Relativistic<sup>105</sup>
 Heavy Ion Collider (RHIC) at Brookhaven National Lab-<sup>106</sup>

102

oratory exceed the energy density at which a stronglycoupled medium of deconfined quarks and gluons, the

quark gluon plasma (QGP), is expected to form [1]. Par-157 107 tons with large transverse momentum  $(p_T \gg \Lambda_{\rm QCD})_{158}$ 108 resulting from hard scatterings provide "hard probes" 159 109 that allow for the unique opportunity to explore the<sub>160</sub> 110 QGP tomographically. Such scatterings occur promptly<sub>161</sub> 111  $(\sim 1/p_T)$  in the initial stages of the collision, and can<sub>162</sub> 112 thus probe the evolution of the medium. The scattered 163 113 partons separate and fragment into back-to-back clus-164 114 ters of collimated hadrons known as jets. Jet  $p_T$  distri-165 115 butions in proton-proton (p+p) collisions at RHIC are<sub>166</sub> 116 117 well-described by perturbative quantum chromodynam-167 ics (pQCD) and can be used as a calibrated reference for  $_{168}$ 118 studies of medium-induced jet modifications [2]. 119 169

Production of high- $p_T$  hadrons, serving as a jet proxy, 170 120 was first found to be highly suppressed at RHIC in single-171 121 particle measurements compared to scaled p + p colli-172 122 sions [3]. Moreover, particle yields on the recoil side  $of_{173}$ 123 high- $p_T$  triggered di-hadron correlations exhibited a shift<sub>174</sub> 124 from high to low energy [4]. These observations  $estab_{175}$ 125 lished the energy dissipation of fast-moving partons as<sub>176</sub> 126 a key signature of a dense partonic medium, known  $as_{177}$ 127 the jet quenching effect [5, 6]. Most theoretical expla- $_{178}$ 128 nations of light quark and gluon jet quenching in heavy-179 129 ion collisions, while differing in details, identify pQCD-180 130 type radiative energy loss (gluon bremsstrahlung) as the<sub>181</sub> 131 dominant mechanism. Inherent to these frameworks is<sub>182</sub> 132 the qualitative feature that the jet structure is softened<sub>183</sub> 133 and broadened with respect to vacuum expectations  $[5_{-184}]$ 134 8]. Advances in jet-finding techniques [9], and the  $\text{pro-}_{185}$ 135 liferation of high- $p_T$  jets at the higher energies accessi-<sub>186</sub> 136 ble at the Large Hadron Collider (LHC) have made  $it_{187}$ 137 possible with a higher center-of-mass energy per nucleon<sub>188</sub> 138 pair to study fully reconstructed jets in heavy-ion col-189 139 lisions for the first time [10-12]. Inclusive jet spectra<sub>190</sub> 140 in the most central (head-on) lead-lead (Pb+Pb) col-191 141 lisions at a center-of-mass energy per nucleon pair of<sub>192</sub> 142  $\sqrt{s_{NN}}=2.76$  TeV were found to be clearly suppressed<sub>193</sub> 143 when compared to scaled p+p or scaled peripheral (glanc-<sub>194</sub> 144 ing) Pb+Pb collisions at the same collision energy. This<sub>195</sub> 145 suppression occurred independently of jet  $p_T$  for jets with<sub>196</sub> 146  $p_T \sim 40 - 210 \text{ GeV}/c$ , and even for jets reconstructed<sub>197</sub> 147 with a resolution parameter as large as R = 0.5 (while<sub>198</sub> 148 the exact meaning of R is algorithm-specific, for the anti-<sub>199</sub> 149  $k_T$  algorithm used throughout this Letter, it typically<sub>200</sub> 150 corresponds to roughly circular clusters of radius R in<sub>201</sub> 151  $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$  where  $\Delta \phi$  is the relative azimuthal<sub>202</sub> 152 angle and  $\Delta \eta$  the relative pseudorapidity). 153 203

Recently, analyses of di-jet pairs revealed a striking<sub>204</sub> energy imbalance for highly energetic back-to-back jet<sub>205</sub> production [11, 13]. The reported imbalance observable<sub>206</sub> is defined as 207

$$A_J \equiv (p_{T,\text{lead}} - p_{T,\text{sublead}})/(p_{T,\text{lead}} + p_{T,\text{sublead}}) \quad (1)_{_{209}}^{^{208}}$$

where  $p_{T,\text{lead}}$  and  $p_{T,\text{sublead}}$  are the transverse momenta<sub>210</sub> for the leading and sub-leading (highest and second-<sub>211</sub> highest  $p_T$ ) jet, respectively, in the di-jets that are re-<sub>212</sub> quired to be approximately back-to-back. In this observable, detector effects in the determination of jet  $p_T$  affect numerator and denominator in a similar manner and thus cancel out to first order. It is therefore less sensitive to effects of the underlying event than inclusive measurements and other di-jet observables. Furthermore, when di-jets with large energy imbalance were examined at the LHC, much of the *lost energy* of these jets seemed to re-emerge as low momentum particles emitted at large angles (more than 0.8 sr away) with respect to the di-jet axis [12, 14, 15].

By contrast, at RHIC energies, measurements based on correlations of hadrons with leading reconstructed jets or non-decay (direct) photons indicate that the lost energy remains much closer to the jet axis [16, 17], suggesting only a moderate broadening of the jet structure for all but the softest constituents. The difference between the RHIC and LHC energy results could be due to a number of different reasons; both the details of the experimental analyses and the mean parton kinematics being probed at the two facilities differ significantly. In addition, the LHC results specifically focus on di-jets with a large energy imbalance on an individual event-by-event basis, whereas published RHIC measurements based on statistical correlations require treatment of an ensemblebased background.

In this Letter, we present the first di-jet imbalance measurement in central gold-gold (Au+Au) collisions at RHIC, thus allowing a more direct comparison to jet quenching measurements at the LHC. The data used in this analysis were collected by the STAR detector in p + p and Au+Au collisions at  $\sqrt{s_{NN}} = 200$  GeV in 2006 and 2007, respectively. Charged tracks are reconstructed with the Time Projection Chamber (TPC) [18]. The transverse energy  $(E_T)$  of neutral hadrons is included by measuring the energy deposited in the Barrel Electromagnetic Calorimeter (BEMC) [19], which has a tower size of  $0.05 \times 0.05$  in azimuth  $\phi$  and pseudorapidity  $\eta$ . To avoid double-counting, the energy deposited by charged hadrons in the BEMC is accounted for by full hadronic correction, in which the transverse momentum of any charged track that extrapolates to a tower is subtracted from the transverse energy of that tower. Tower energies are set to zero if they would otherwise become negative via this correction. While full hadronic correction is an overly conservative way to avoid doublecounting energy from charged tracks, it has been found to be the most robust approach [20]. All measurements in this letter were also repeated as a cross check using the opposite extreme, subtracting only the minimum ionizing particle energy, and all physics conclusions were unaffected. Both the TPC and the BEMC uniformly cover the full azimuth and a pseudorapidity range of  $|\eta| < 1$ . Events were selected by an online high tower (HT) trigger, which required an uncorrected  $E_T > 5.4$  GeV in at least one BEMC tower. In Au+Au collisions, only the

most central 20% of the events are analyzed, where event<sub>267</sub> 213 centrality is a measure of the overlap of the colliding nu-268 214 clei, determined by the raw charged particle multiplicity<sub>269</sub> 215 in the TPC within  $|\eta| < 0.5$ . Events are restricted to<sub>270</sub> 216 have a primary vertex position along the beam axis of<sub>271</sub> 217  $|v_z| < 30$  cm. Tracks are required to have more than  $52\%_{272}$ 218 of available points measured in the TPC (up to 45), and a273 219 minimum of 20, a distance of closest approach (DCA) to<sub>274</sub> 220 the collision vertex of less than 1 cm, and pseudorapidity<sub>275</sub> 221 within  $|\eta| < 1$ . 276 222

Jets are reconstructed from charged tracks measured<sup>277</sup> 223 in the TPC and neutral particle information recorded by<sub>278</sub> 224 the BEMC, using the anti- $k_T$  algorithm from the FastJet<sub>279</sub> 225 package [9, 21] with resolution parameters R = 0.4 and 280 226 0.2. The reconstructed jet axes are required to be within<sub>281</sub> 227  $|\eta| < 1 - R$  to avoid partially reconstructed jets at the<sub>282</sub> 228 edge of the acceptance. In this analysis, the initial defi-283 229 nition of the di-jet pair considers only tracks and towers284 230 with  $p_T > 2 \text{ GeV}/c$  in the jet reconstruction. This is done<sup>285</sup> 231 to minimize the effects of background fluctuations and<sup>286</sup> 232 combinatorial jets not originating from an initial hard<sub>287</sub> 233 scatter, and to make an average background energy sub-288 234 traction unnecessary. We will refer to this selection as<sub>289</sub> 235 (di-)jets with "hard cores", as most of their energy is<sub>290</sub> 236 carried by just a few high- $p_T$  constituents. The event-291 237 by-event background energy density  $\rho$  is determined as<sub>292</sub> 238 the median of  $p_T^{\text{jet,rec}}/A^{\text{jet}}$  of all but the two leading jets,293 239 using the  $k_T$  algorithm with the same resolution param-294 240 eter R as in the nominal jet reconstruction [9]. The area<sub>295</sub> 241  $A^{\rm jet}$  of jets is also found with the FastJet package (us-296 242 ing active ghost particles). At RHIC energies, the me-297 243 dian background energy density  $\langle \rho \rangle$  when only particles<sub>298</sub> 244 with  $p_T > 2 \text{ GeV}/c$  are considered is 0. Hence no event-<sub>299</sub> 245 by-event  $\rho$  subtraction is applied for these "hard-core" <sub>300</sub> 246 jets. The small residual influence of background fluc-301 247 tuations is captured by embedding the p + p reference<sub>302</sub> 248 hard-core jets into an Au+Au event (after reconstruc-303 249 tion). When, later in the analysis, the constituent  $cut_{304}$ 250 is lowered,  $\rho$  is recalculated event-by-event and the cor-305 251 rected jet  $p_T = p_T^{\text{jet,rec}} - \rho A^{\text{jet}}$  is used, discarding jets<sub>306</sub> 252 with  $p_T < 0$ . 253

The di-jet imbalance  $A_J$  is initially calculated in<sub>308</sub> Au+Au HT events for leading and sub-leading jets ful-<sub>309</sub> filling the following requirements: 310

• 
$$p_{T,\text{lead}} > 20 \text{ GeV}/c \text{ and } p_{T,\text{sublead}} > 10 \text{ GeV}/c,$$

$$|\phi_{\text{lead}} - \phi_{\text{sublead}} - \pi| < 0.4$$
 (back-to-back).

1 1)

311

312

313

314

In this Letter, jet energies are not corrected back to<sub>315</sub> 259 the original parton energies apart from the correction<sub>316</sub> 260 for relative reconstruction efficiency differences between317 261 Au+Au and p + p described below. In order to make<sub>318</sub> 262 meaningful quantitative comparisons between the di-jet<sub>319</sub> 263 imbalance measured in Au+Au to that in p+p, it is how-320 264 ever necessary to compare jets which have similar initial<sub>321</sub> 265 parton energies in the two collision systems, and to take<sub>322</sub> 266

the remaining effect of background fluctuations into account. The uncertainty on the absolute jet energy scale is 5%, partially cancelling out in  $A_J$ . A detailed discussion of jet energy scale uncertainties and background fluctuations can be found in Ref. [22] which includes References [23–29]. It was shown in [16] that Au+Au HT leading jets are similar to p + p HT leading jets embedded in a Au+Au background. A di-jet imbalance reference dataset is therefore constructed in this analysis via embedding p + p HT events into Au+Au minimum bias (i. e., without a high tower trigger) events with a 0-20%centrality requirement identical to the HT data (p + p) $HT \oplus Au+Au MB$ ). The heavy ion background has the potential to bias an online high tower trigger toward a higher population of low-energy jets that would not be accounted for by the embedding. In a previous study, this effect was conservatively accounted for with a small systematic uncertainty [16]. The relatively high leading jet requirement and the robustness of the observable in this analysis further reduce a potential influence of such a bias. A cross-check with a higher off-line trigger requirement did not show any effect beyond statistics, and we therefore do not assign a systematic uncertainty.

The performance of the TPC and BEMC can vary in different collision systems and over time. The relative TPC tracking efficiency in Au+Au is ca.  $90\% \pm 7\%$  that of p + p [16], and this difference is accounted for in the p + p HT  $\oplus$  Au+Au MB during embedding by randomly rejecting charged p + p tracks with a probability given by this efficiency difference. The uncertainty on this correction is the largest contributor to systematic uncertainty, and it is assessed by repeating the measurement with the respective minimum and maximum efficiency. The tower efficiency in Au+Au collisions relative to p + p collisions is  $98\% \pm 2\%$  [16], and its contribution to systematic uncertainties is negligible compared to the respective TPC uncertainty. The systematics due to the relative tower energy scale uncertainty (2%) are again assessed via the embedding procedure by increasing or decreasing the  $E_T$ of all p + p towers by 2%. Only the differences between Au+Au and embedded p + p are discussed in this Letter, so no absolute uncertainty on Au+Au is explored. The two variations above constitute the systematics, and their quadrature sum is shown in colored shaded boxes in all figures.

In Fig. 1 the  $A_J$  distribution from central Au+Au collisions for anti- $k_T$  jets with R = 0.4 (solid red circles) is compared to the p + p HT embedding reference (p + pHT  $\oplus$  Au+Au MB, open circles) for a jet constituent- $p_T$ cut of  $p_T^{\text{Cut}} > 2 \text{ GeV}/c$ . Di-jets in central Au+Au collisions are significantly more imbalanced than the corresponding p+p di-jets. To further quantify this difference the p-value for the hypothesis that the two histograms represent identical distributions was calculated with a Kolmogorov-Smirnov test on the unbinned data [30], i. e., including only the statistical uncertainties. For an esti-



FIG. 1. (Color online.) Normalized  $A_J$  distributions for Au+Au HT data (filled symbols) and p+p HT  $\oplus$  Au+Au MB (open symbols). The red circles are for jets found using only constituents with  $p_T^{\text{Cut}} > 2$  GeV/*c* and the black squares for matched jets found using constituents with  $p_T^{\text{Cut}} > 0.2$  GeV/*c*. In all cases R = 0.4. Stat. errors may be smaller than symbol size for p + p HT  $\oplus$  Au+Au MB.

mate of systematic effects we quote the range of minimal and maximal values obtained during efficiency and tower energy scale variations. The calculated p-value<sup>356</sup>  $< 1 \times 10^{-8} (4 \times 10^{-10} - 1 \times 10^{-6})$  supports the hypothesis<sup>357</sup> that the Au+Au and p + p HT  $\oplus$  Au+Au data are not<sup>358</sup> drawn from the same parent  $A_J$  distributions.

In order to assess if the energy imbalance can be re-360 329 stored for these di-jets by including the jet constituents<sup>361</sup> 330 below 2 GeV/c in transverse momentum, the jet-finder<sup>362</sup> 331 was run again on the same events, but with a lower con-363 332 stituent  $p_T$  cut of  $p_T^{\text{Cut}} > 0.2 \text{ GeV}/c$ . The di-jet imbal-<sup>364</sup> 333 ance  $A_J$  was then recalculated for jet pairs geometrically<sup>365</sup> 334 matched to the original hard core di-jets. For this match-<sup>366</sup> 335 ing, the highest  $p_T$  jet within  $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < R_{367}$ 336 of the hard core jet was chosen. This matching has bet-368 337 ter than 99% efficiency. To account for the significant<sup>369</sup> 338 low- $p_T$  background, this recalculation used background- ${}^{370}$  corrected jet  $p_T = p_T^{\text{jet,rec}} - \rho A^{\text{jet}}$ . In the central data ${}^{371}$ 339 340 considered here,  $\rho$  is a broad distribution with an aver-372 341 age value of about 57 (GeV/c)/sr. The reference  $p + p_{373}$ 342  $HT \oplus Au+Au MB$  embedding distribution was recalcu-374 343 lated in the same manner. For matched jets, the role of<sup>375</sup> 344 leading and sub-leading jets is not re-enforced, so  $A_J$  can<sup>376</sup> 345 now become negative; all figures include a dashed line at<sup>377</sup> 346 0 to guide the eye. 378 347

In Fig. 1 the matched di-jet imbalance measured for a<sup>379</sup> 348 low constituent  $p_T^{\text{Cut}}$  in central Au+Au collisions (solid<sup>380</sup> 349 black squares) is compared to the new p+p HT  $\oplus$  Au+Au<sup>381</sup> 350 MB embedding reference (open squares). Remarkably,<sup>382</sup> 351 the  $A_J$  distribution in Au+Au now reproduces the  $p + p_{383}$ 352 data within uncertainties; the p-value between these two<sub>384</sub> 353 distributions is 0.4 (0.2-0.6). This observation suggests<sub>385</sub> 354 that the jet energy balance can be restored to the level of<sub>386</sub> 355





FIG. 2. (Color online.) Repetition of the analysis shown in Fig. 1 with a smaller resolution parameter R = 0.2. Normalized  $A_J$  distributions for Au+Au HT data (filled symbols) and p + p HT  $\oplus$  Au+Au MB (open symbols). The red circles are for jets found using only constituents with  $p_T^{\text{Cut}} > 2 \text{ GeV}/c$  and the black squares are for matched jets found using constituents with  $p_T^{\text{Cut}} > 0.2 \text{ GeV}/c$ . Stat. errors may be smaller than symbol size for p + p HT  $\oplus$  Au+Au MB.

p+p in central Au+Au HT events for this class of di-jets if low  $p_T$  constituents are included within an anti- $k_T$  jet of resolution parameter (radius) R = 0.4.

In order to assess if the observed softening of the jet fragmentation is accompanied by a broadening of the jet profile, a measurement of the di-jet imbalance with a resolution parameter of R = 0.2 was performed in an analogous fashion to the measurement described above. As shown in Fig. 2, narrowing the cone to R = 0.2 leads to significant differences between central Au+Au and embedded p + p for jets with hard cores, with a p-value of  $1\times 10^{-8}~(1\times 10^{-9}\text{--}3\times 10^{-7}).$  Including soft constituents down to 0.2 GeV/c is no longer sufficient to restore the imbalance to the level of the p + p reference. This continued disparity between the p + p and Au+Au data is supported by a calculated p-value of  $7 \times 10^{-8}$  ( $2 \times 10^{-8}$ - $4 \times 10^{-7}$ ). As a conservative test whether the different balancing behavior between R = 0.2 and R = 0.4 could be caused purely by smearing due to additional fluctuations, the matched R = 0.2 di-jet pairs, i.e. including soft constituents, for both Au+Au HT and p + p HT  $\oplus$ Au+Au MB were embedded into rings with inner radius 0.2 and outer radius 0.4 selected randomly from 0-20%MB Au+Au in an analogous manner to the RC method above. Significant differences with a p-value of  $2 \times 10^{-6}$  $(1 \times 10^{-4} - 3 \times 10^{-7})$  remained in the  $A_J$  distribution that were not seen in true R=0.4 jets.

In all descriptions of the QGP, energy redistribution via gluon bremsstrahlung is dependent on in-medium path length. Requiring high- $p_T$  hadrons in the measured final state therefore imposes a significant bias toward production near the surface of the fireball, a paradigm known443
as Surface Bias. Previous STAR jet-hadron measure-444
ments are well-captured by YaJEM-DE, a Monte Carlo445
model of in-medium shower evolution that predicts just446
such a surface bias for the same leading jet selection as447
used in this Letter [16, 31].

The initial hard core di-jet selection places hard hadron<sup>449</sup> 393 requirements on the recoil jet in addition to those on<sup>450</sup> 394 the leading jet. In the surface bias picture, they are451 395 therefore expected to display a pronounced preference<sup>452</sup> 396 toward almost tangential di-jets, probes that graze the453 397 medium with a shorter but finite in-medium path-length<sup>454</sup> 398 compared to the unbiased di-jet selection at LHC ener-399 gies [32]. Correlation measurements with two hard par-400 ticles as jet proxies support the presence of such a tan-401 gential bias as well [33]. Our measurements of clearly 402 modified jets whose "lost" energy can nevertheless be re-403 404 tively consistent with this picture. 405 458

The qualitative change in the di-jet imbalance for<sub>459</sub> 406 smaller R jets as reported in this letter is the first step<sup>460</sup> 407 towards enabling Jet Geometry Engineering of jet pro-461 408 duction points which will allow control over the path<sup>462</sup> 409 lengths and interaction probabilities of jet quenching  $ef^{463}$ 410 fects within the colored medium. In addition it would  $^{464}_{465}$ 411 be very interesting to repeat this  $A_J$  study with "hard<sub>466</sub> 412 core" di-jets at the LHC to see if a similar energy loss<sub>467</sub> 413 pattern is observed when similar jet pairs are selected.<sup>468</sup> 414 Comparison and combined analysis of these new RHIC<sup>469</sup> 415 results and current published LHC measurements will al-470 416 ready enable new and enhanced constraints to be  $\operatorname{placed}^{\scriptscriptstyle 471}$ 417 on the dynamics underlying modified fragmentation and 418 energy dissipation in heavy-ion collisions. 419 474

In conclusion, we reported the first  $A_J$  measurement<sub>475</sub> 420 performed at  $\sqrt{s_{NN}} = 200$  GeV. A selection of di-jet<sup>476</sup> 421 pairs with hard cores is probed. For a resolution parame-477 422 ter of R = 0.4, a clear increase in di-jet momentum imbal-423 ance is observed compared to a p + p baseline when  $\operatorname{only}_{_{480}}^{_{479}}$ 424 constituents with  $p_T^{\text{Cut}} > 2 \text{ GeV}/c$  are considered. When<sub>481</sub> 425 allowing softer constituents down to  $p_T^{\text{Cut}} > 0.2 \text{ GeV}/c_{,_{482}}$ 426 the energy balance becomes the same within errors as<sub>483</sub> 427 the one measured in p + p data. By contrast, repeating<sup>484</sup> 428 the same measurement with a smaller resolution param-485 429 eter of R = 0.2 leads to significant remaining momentum<sup>486</sup> 430 imbalance even for jets with soft constituents. The re- $\frac{487}{488}$ 431 sults are the first indication that at RHIC energies it  $is_{480}$ 432 possible to select a sample of reconstructed di-jets that<sub>490</sub> 433 clearly lost energy via interactions with the medium but<sub>491</sub> 434 whose lost energy re-emerges as soft constituents accom-492 435 panied with a small, but significant, broadening of the jet<sup>493</sup> 436 structure compared to p + p fragmentation. The above<sup>494</sup> 437 observations are consistent with the qualitative expecta- $^{495}$ 438 tions of pQCD-like radiative energy loss in the hot, dense 439 medium created at RHIC. 440

We thank the RHIC Operations Group and RCF at<sup>499</sup> BNL, the NERSC Center at LBNL, the KISTI Center in<sup>500</sup> Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NSFC, CAS, MoST and MoE of China, the National Research Foundation of Korea, NCKU (Taiwan), GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia.

- J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005);
   K. Adcox et al. (PHENIX), *ibid.* A757, 184 (2005); I. Arsene et al. (BRAHMS), *ibid.* A757, 1 (2005); B. B. Back et al. (PHOBOS), *ibid.* A757, 28 (2005).
- [2] B. Abelev *et al.* (STAR), Phys. Rev. Lett. **99**, 142003 (2007).
- [3] K. Adcox et al. (PHENIX), Phys. Rev. Lett. 88, 022301 (2002);
  I. Arsene et al. (BRAHMS), *ibid.* 91, 072305 (2003);
  J. Adams et al. (STAR), *ibid.* 91, 172302 (2003);
  B. Back et al. (PHOBOS), *ibid.* 91, 072302 (2003).
- [4] M. Aggarwal *et al.* (STAR), Phys. Rev. C82, 024912 (2010).
- [5] M. Gyulassy and M. Plumer, Phys. Lett. B243, 432 (1990).
- [6] A. Majumder and M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011).
- [7] K. M. Burke, Buzzatti, *et al.* (JET Collaboration), Phys. Rev. **C90**, 014909 (2014).
- [8] G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E24, 1530014 (2015).
- [9] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C72, 1896 (2012).
- [10] J. Adam et al. (ALICE), Phys. Lett. B746, 1 (2015).
- [11] S. Chatrchyan *et al.* (CMS), Phys. Rev. C84, 024906 (2011).
- [12] G. Aad et al. (ATLAS), Phys. Lett. B719, 220 (2013).
- [13] G. Aad *et al.* (ATLAS), Phys. Rev. Lett. **105**, 252303 (2010).
- [14] S. Chatrchyan *et al.* (CMS), Phys. Lett. **B712**, 176 (2012).
- [15] V. Khachatryan *et al.* (CMS), J. High Energy Phys. **02**, 156 (2016).
- [16] L. Adamczyk *et al.* (STAR), Phys. Rev. Lett. **112**, 122301 (2014).
- [17] A. Adare *et al.* (PHENIX), Phys. Rev. Lett. **111**, 032301 (2013).
- [18] M. Anderson *et al.*, Nucl. Instrum. Meth. A **499**, 659 (2003).
- [19] M. Beddo *et al.* (STAR), Nucl. Instrum. Meth. A499, 725 (2003).
- [20] L. Adamczyk *et al.* (STAR), Phys. Rev. Lett. **115**, 092002 (2015).
- [21] M. Cacciari et al., J. High Energy Phys. 04, 005 (2008).
- [22] See Supplemental Material http://link.aps.org/supplemental/XXX/YYY.
- [23] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05,

026 (2006).

501

- [24] H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. I. Ol-513
   ness, J. F. Owens, J. Pumplin, and W. K. Tung (CTEQ),514
   Eur. Phys. J. C12, 375 (2000).
- [25] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and 516
   P. Zanarini, "GEANT3," (1987), cERN-DD-EE-84-1. 517
- 507 [26] B. I. Abelev *et al.* (STAR), Phys. Rev. Lett. **100**, 232003518 508 (2008). 519
- 509 [27] L. Adamczyk *et al.* (STAR), (2017), arXiv:1702.01108520 510 [nucl-ex], submitted for publication. 521
- <sup>511</sup> [28] B. Abelev *et al.* (ALICE), JHEP **03**, 053 (2012).

- [29] A. Ohlson, Investigating Parton Energy Loss with Jethadron Correlations and Jet  $v_n$  at STAR, Ph.D. thesis, Yale University (2013).
- [30] I. M. Chakravarti, R. G. Laha, and J. Roy, *Handbook of Methods of Applied Statistics*, Vol. I (John Wiley and Sons, New York, 1967) pp. 392-394.
- [31] T. Renk, Phys. Rev. C 87, 024905 (2013).

512

- [32] T. Renk, Phys. Rev. C85, 064908 (2012).
- [33] L. Adamczyk *et al.* (STAR), Phys. Rev. C87, 044903 (2013).