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Data on the reaction γp → K+Λ from the CLAS experiments are used to derive the leading
multipoles, E0+, M1−, E1+, and M1+, from the production threshold to 2180MeV in 24 slices of
the invariant mass. The four multipoles are determined without any constraints. The multipoles are
fitted using a multichannel L+ P model which allows us to search for singularities and to extract
the positions of poles on the complex energy plane in an almost model-independent method. The
multipoles are also used as additional constraints in an energy-dependent analysis of a large body
of pion and photo-induced reactions within the Bonn-Gatchina (BnGa) partial wave analysis. The
study confirms the existence of poles due to nucleon resonances with spin-parity JP = 1/2−; 1/2+,
and 3/2+ in the region at about 1.9GeV.

“Three quarks for Muster Mark” [1]. This sentence in-
spired Gell-Mann [2] to call quarks the three constituents
of nucleons, of protons or neutrons. As a three-body
system, the nucleon is expected to exhibit a large num-
ber of excitation modes. The most comprehensive pre-
dictions of the resonance excitation spectrum stem from
quark-model calculations [3]-[8]; this predicted spectrum
is qualitatively confirmed by recent Lattice QCD calcu-
lations [9], even though the quark masses used lead to
a pion mass of 396MeV. The predicted resonances may
decay into a large variety of different decay modes. The
most easily accessible was, for a long time, the πN de-
cay of nucleon excitations by studying π±p elastic scat-
tering and the π−p → π0n charge exchange reaction.
A large amount of data were analyzed by the groups at
Karlsruhe-Helsinki (KH) [10], Carnegie-Mellon (CM) [11]
and at GWU [12]. Real and imaginary parts of partial
waves amplitudes with defined spin and parity (JP ) were
extracted in slices of the πN invariant mass, and resonant
contributions were identified. However, only a small frac-
tion of the predicted energy levels has been observed ex-
perimentally, and for some of them, the evidence for their
existence is only fair or even poor [13, 14].

The small number of observed excitations of the nu-
cleon, as compared to quark model calculations, led to a
number of speculations: Are nucleon resonances quark-
diquark oscillations with quasi-stable diquarks [15–19]) ?
Are resonances generated by meson-baryon interactions
[20–25], and are quarks and gluons misleading as de-
grees of freedom to interpret the excitation spectrum?
Does the mass-degeneracy of high-mass baryon reso-
nances with positive and negative-parity hadron reso-
nances indicate the onset of a new regime in which chi-
ral symmetry is restored [26–28] ? At low excitation en-
ergy, chiral symmetry is strongly violated as indicated by
the large mass gap between the nucleon mass (with spin-

parity JP = 1/2+) and its chiral partner N(1535) with
JP =1/2−. A more conventional interpretation assumes
that the missing resonances may have escaped detection
due to their small coupling to the πN channel [29]. Some
evidence exists, however, that resonances in this mass re-
gion can be produced by electromagnetic excitation and
decay into K+Λ [14]. Thus, the photoproduction re-
action γp → K+Λ bears the promise of revealing the
existence of resonances that are only weakly coupled to
πN . Fits to pion and photo-produced reactions have been
performed by several groups (BnGa [30], EBAC (KEK-
Osaka-Argonne) [31], Gießen [32], JüBo [33], MAID [34],
SAID [35], and others), and a number of resonances has
been reported [36]. The resonances stem from energy-
dependent fits to the data. The resonances and the back-
ground contributions in all partial waves need to be de-
termined in a single step. New data on γp → K+Λ en-
able a reconstruction of the photoproduction multipoles
as functions of energy. The multipoles drive the excita-
tion of one partial wave; hence the fits need to determine
only resonances – and the background – contributing to
a single partial wave.

The photoproduction of pseudoscalar mesons with an
octet baryon in the final state is governed by four com-
plex (CGLN) amplitudes Fi, i = 1, ..4 [37]. The Fi are
functions of the invariant mass W and of the center-of-
mass (c.m.) scattering angle θ. These four amplitudes
determine fully the outcome of any experiment. A de-
termination of the four complex Fi amplitudes obviously
requires the measurement of at least seven different ob-
servables as functions ofW and θ, and one phase remains
undetermined. A more detailed study shows that such a
model-independent amplitude analysis requires the mea-
surement of at least eight carefully chosen observables of
sufficient statistical accuracy [38, 39].

Recently, the CLAS collaboration reported precise
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data on the process γp → K+Λ. The differential cross
section dσ/dΩ and the Λ recoil polarization P were given
in [40], the polarization transfer from circular photon po-
larization to the Λ hyperon Cx and Cz in [41], the beam
asymmetry Σ, the target asymmetry T , and the polar-
ization transfer from linear photon polarization to the
Λ hyperon Ox, Oz were reported in [42]. Whilst these
represent eight measured observables, data using a po-
larized target are still required to meet the requirements
for fully reconstructing the photoproduction amplitudes
at each value of W and θ. Alternatively, the angular
dependence can be exploited, and the multipoles can be
fitted directly. This reduces the number of observables
and the statistical precision of the data that are required
to get a fit [43].
In this paper, we determine the multipoles driving the

process γp → K+Λ in 20MeV wide slices of K+Λ invari-
ant mass. The formalism used to determine multipoles
from data is described in [44] where a first attempt was
made to determine multipoles in slices of invariant mass.
The observables are related to the Fi amplitudes; here
we give one example. The recoil polarization P is given
by

P I = sin(θ)Im[(2F∗
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∗
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Once the Fi functions are known, they can be ex-
panded into associated Legendre functions PL(cos θ) and
their derivatives P ′

L(cos θ) with orbital angular momenta
L between the K+ and Λ. We have, e.g.,

F2(W, cos θ) =

∞
∑

L=1

[(L+ 1)ML+ + LML−]P
′

L(cos θ). (2)

EL± and ML± are electric and magnetic multipoles driv-
ing final states with defined orbital angular momentum
L between meson and baryon and a total spin and parity
JP = (L ± 1/2)±. Similar relations hold for the other
three Fi functions [44].
The number of multipoles increases considerably when

higher orbital angular momenta are admitted, and ex-
tremely precise data are required. Even then, for each
slice in energy and angle one phase remains undeter-
mined. Hence one has to suppose that the phase of one
multipole amplitude is known which one might take from
an energy-dependent fit. Clearly, this introduces some
model-dependence into the analysis.
Alternatively, the Legendre expansion of Fi functions

(2) can be inserted into the expressions for the polariza-
tion observables (1). In principle, this is an infinite series
that needs to be determined. However, one can either
truncate the power series at a given L, or one can take the
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Figure 1. (Color online) Example of a fit to the data for the
mass range from 1950 to 1970MeV. dσ/dΩ: [40], P [40], Σ,
T , Ox, Oz [42]. The (red) dotted curve corresponds to the fit
used to determine the multipoles of Fig. 2, the (black) solid
curves to fits using L + P for low-L partial wave and BnGa
for high-L, and the (green) dashed curves to the BnGa fit.

high-L multipoles from a model. We use the high-L mul-
tipoles from a variety of solutions of the Bonn-Gatchina
(BnGa) fits [30].

Figure 1 shows data on γp → K+Λ for one mass bin
and with three fit curves. The data on Cx, Cz, given in
wider mass bins, are mapped onto 20MeV bins and are
used in addition. The red (dotted) curves in Fig. 1 show
the result of a single-energy fit to the data. With the
given accuracy of the data, we found that only a small
number of multipoles – E0+, M1−, E1+, M1+ – can be
determined without imposing additional constraints (like
a penalty function which forces the fit not to deviate too
much from a predefined solution). The fit determines the
real and imaginary parts of these four photoproduction
multipoles for one single mass bin. These four multipoles
varied freely in the fit, with no constraint. They excite
resonances with the quantum numbers JP = 1/2+, 1/2−,
and 3/2+. Three further multipoles – E2−, M2−, E2+

driving excitations to JP = 3/2− and 5/2− – were con-
strained to the energy-dependent BnGa fit by a penalty
function which forces the fit not to deviate too much
from the predefined solution. The higher mutipoles (up
to L < 9) were fixed to the energy-dependent BnGa fit.
These multipoles also provide the overall phase.

Figure 1 shows two more fits: the solid curves repre-
sent the L + P fit (described below), the dashed curves
the energy-dependent BnGa fit. The results of the BnGa
fits are shown in Table I. In the fits, different BnGa
starting fits were used which resulted from different fit
hypotheses. In particular, high-mass resonances with
spin-parities JP = 1/2±, ..., 7/2± were added to the fit
hypothesis. The spread of the results was used to derive
the errors given in Table I.

Figure 2 shows the multipoles as functions of the mass.
The statistical errors are determined by a scan of the χ2
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dependence of the single-energy fit on one of the mul-
tipoles while the other multipoles vary freely. The χ2

of this fit includes the statistical and systematic errors of
the data. The systematic errors for the real part are given
at the top of the subfigures, those for the imaginary part
on the bottom. The systematic errors are determined by
using different energy-dependent BnGa fits, used to con-
strain the multipoles E2−, M2−, E2+ and to determine
the higher partial waves. The different energy-dependent
BnGa fits include, one by one, additional high-mass res-
onances (with weak evidence for their existence) in each
partial wave. At small masses, there are visible differ-
ences between the L+P fit and the BnGa fit. These can
be traced to the lack of polarization data at low energies
in the backward region.

First, we notice that all fitted multipoles show strong
variations as functions of the mass. It therefore seems
obvious that there are strong resonant contributions. In-
deed, a first simple fit with Breit-Wigner amplitudes plus
a polynomial background shows that resonant contribu-
tions are necessary for all four multipoles to achieve a
good fit.

In this paper, we use a Laurent (more precisely Mittag-
Leffler [45]) method [46–52], called the L+P method, to
separate the singularities and the regular parts. The
background is represented by analytic functions with well
defined cuts. The method was described by Ciulli and
Fischer in [53] and extensively used in the KH description
of πN scattering [10] (details are described by Pietari-
nen in [54, 55]). The method is (almost) model indepen-
dent. No dynamical assumptions are made except that
the scattering amplitude is an analytic function in the
complex energy plane with singularities due to poles and
thresholds.

The transition amplitude of the L+P model is
parametrized as
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where a is a channel index, Wj are pole positions in the
complexW (energy) plane, gaj are residues for πN → KΛ
transitions. The xa

i define the branch points, caki
, and
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of Pietarinen coefficients in channel a. The first part
represents the poles and the second term three branch
points. The first branch point is chosen to describe all
subthreshold and left-hand cut processes, the second one
is fixed to the dominant channel opening, and the third
one represents background contributions of all channel
openings in the physical range.
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is the Pietarinen penalty function which ensures fast and
optimal convergence.
Na

W is the number of energies in channel a, Na
par the

number of fit parameters in channel a, λa
c , λ

a
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a
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Pietarinen weighting factors, ErrRe, Im
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real and imaginary part, and cak1
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constants.
Figure 2 shows the L+P fit. This fit follows the “data”

much more precisely than the BnGa fit. The reason is, of
course, that BnGa fits the real data while L+P represents
a fit to the “data” in Fig. 2.
In addition to the data on γp → K+Λ discussed here

(channel a = 1), we included in the fits the amplitudes
TJP for π−p → K0Λ (channel a = 2) [56] since they
provide the information on the πN → KΛ transition
residues and allowed for a better determination of the
low-mass poles at the KΛ threshold. The photoproduc-
tion data alone determine well the properties of the res-
onance at about 1900MeV but not the poles at the KΛ
threshold. The N(1720)3/2+ resonance cannot be deter-
mined reliably from the KΛ final states.
E0+ and T1/2−: First, the branch points were fixed

to the πN , K+Λ, and the η′p thresholds. A fit with
one pole failed to reproduce both channels, and a second
pole was added. The fit gave a reasonable description
of the data and was slightly improved when the second
and third branch points were released to adjust to close-
by values. The results of the fit are given in Table I.
The agreement between the BnGa and the L + P fit is
excellent. We consider the existence of both resonances
as certain and its properties as reasonably well defined.
M1− and T1/2+: The procedure was repeated for

the JP = 1/2+ partial wave. Again, the fits requires two
resonances, in particular the new N(1880)1/2+ state, but
it turns out to be rather narrow. The second branch point
was fixed at the K+Λ threshold, the third one moved
to x3 = 1.898 GeV. The result of the L + P and the
BnGa fits are given in Table I. The existence of both
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Figure 2. (Color online) Real (red triangles) and imaginary (blue dots) part of the E0+, M1−, E1+, and M1+ multipoles for
the reaction γp → K+Λ. The systematic errors are given at the top (real part) and bottom (imaginary part) of the subfigures.
E0+ excites the partial wave JP = 1/2−; M1−: JP = 1/2+; E1+ and M1+: JP = 3/2+. The solid curve shows the L+P fit,
the dashed curve the energy-dependent BnGa fit.

Table I. Properties of nucleon resonances from the Particle Data Group (PDG estimates) [14], the BnGa PWA fit, and from
L+ P fits. Masses and widths are given in MeV, the normalized inelastic pole residues 2 · ga(πN → KΛ)/Γa are numbers.

JP = 1/2− JP = 1/2+ JP = 3/2+

PDG BnGa MC L+ P PDG BnGa MC L+ P PDG BnGa L+P

M1 1640-1670 1658± 10 1660± 5 1670-1770 1690 ± 15 1697 ± 23 - - -

Γ1 100-170 102± 8 59± 16 90-380 155± 25 84± 34 - - -

|Res
1
(πN→KΛ)| 0.26 ± 0.10 0.10 ± 0.10 - 0.16 ± 0.05 0.12+0.24

−0.12 - - -

Θ1 - (110± 20)0 (95± 33)0 - −(160± 25)0 −(119± 83)0 - - -

M2 - 1895± 15 1906 ± 17 - 1860 ± 40 1875 ± 11 1900-1940 1945 ± 35 1912 ± 30

Γ2 - 132± 30 100± 10 - 230± 50 33± 9 130-300 135+70

−30 166 ± 30

|Res
2
(πN→KΛ)| - 0.09 ± 0.03 0.06 ± 0.02 - 0.05 ± 0.02 0.30 ± 0.10 - 0.03 ± 0.02 −

Θ2 - (8± 30)0 (87± 27)0 - (27± 30)0 (82± 9)0 - (90± 40)0 −

resonances is mandatory in both fits. However, there
is a discrepancy in the width. We changed the binning
by shifting the bins by 10MeV and by choosing 25MeV
bins; the narrow structure in the L+P fit remained. The
narrow width is however incompatible with the BnGa fit:
when a N(1880)1/2+ width of 42MeV was imposed, the
overall χ2 deteriorated by 1000 units, and the fit visibly
missed to describe the data properly.

When a N(1880)1/2+ width of 150MeV was imposed
in the L + P fit, it deteriorated from χ2 = 16.7 for 76
data points and 43 parameters to χ2 = 24.9 for 40 pa-
rameters. Compared to the actual data, the difference
of the main L+ P fit (with 33MeV width) and the test
fit (with 150MeV width) is marginal. For the 674 data
points, the improvement in χ2 is 4.5 only. This gain does
not justify to claim a narrow structure in the M1− multi-
pole. It seems that, in the energy independent analysis,
small systematic deviations from the “true” values cre-
ate a narrow structure which can interpreted as a narrow
resonance. The existence of N(1880)1/2+ is certain but
the N(1880)1/2+ width is not well defined, likely due to
a statistical fluctuation (or a systematic deviation) in one
of the data sets.

E1+ and M1+: In this case, only single-channel
analyses were performed as the data from π−p → K0Λ
process were of insufficient quality. In particular, the

properties of N(1720)3/2+ could not be deduced from
the fits. The E1+, M1+ multipoles were fitted simulta-
neously with identical pole positions, the same branch
points but with free Pietarinen coefficients. The second
branch-point was fixed to the KΛ threshold, the third
branch-point converged to x3 = 2.46 GeV. The results
of the fit are reproduced in Table I. We consider the ex-
istence of the N(1900)3/2+ resonance as certain and its
properties as reasonably well defined.

The use of two independent approaches, one energy-
independent and one energy-dependent allowed us to
draw definitive conclusions about the existence of sev-
eral excited nucleon states. So far, the evidence for
two of these resonances was estimated by the PDG to
be fair only. These two resonances, N(1880)1/2+ and
N(1895)1/2−, are presently not included in the PDG
Baryon Summary Table and are mostly not taken into
account when models of baryons are compared to data.
Establishing the existence of nucleon resonances in this
mass range is therefore of great importance.

Summarizing, we have determined low-Lmultipoles for
the reaction γp → K+Λ. The multipoles were fitted
using the Laurent-Pietarinen method, which has minimal
model dependence. The fits firmly establish the existence
of three resonances and determined their properties. This
opens up a promising new avenue of the field of baryon
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spectroscopy with electromagnetic probes.
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[49] A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Sta-
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