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Current theories of superfluidity are based on the idea of a coherent quantum state with topologically pro-
tected, quantized circulation. When this topological protection is absent, as in the case of 3He-A, the coherent
quantum state no longer supports persistent superflow. Here we argue that the loss of topological protection in
a superconductor gives rise to an insulating ground state. We specifically introduce the concept of a Skyrme
insulator to describe the coherent dielectric state that results from the topological failure of superflow carried
by a complex vector order parameter. We apply this idea to the case of SmB6, arguing that the observation of a
diamagnetic Fermi surface within an insulating bulk can be understood as a realization of this state. Our theory
enables us to understand the linear specific heat of SmB6 in terms of a neutral Majorana Fermi sea and leads us
to predict that in low fields of order a Gauss, SmB6 will develop a Meissner effect.

While it is widely understood that superfluids and super-
conductors carry persistent “supercurrents” associated with
the rigidity of the broken symmetry condensate[1], it is less
commonly appreciated that the remarkable persistence of su-
percurrents has its origins in topology. The order parameter of
a conventional superfluid or superconductor lies on a circular
manifold (S1) and the topologically stable winding number
of the order parameter, like a string wrapped multiple times
around a rod, protects a circulating superflow. However, if the
order parameter lies on a higher dimensional manifold, such
as the surface of a sphere (S2), then the winding has no topo-
logical protection and putative supercurrents relax their en-
ergy through a continuous reduction of the winding number,
leading to dissipation [see Fig. 1]. This topological failure of
superfluidity is observed in the A phase of 3He, which exhibits
dissipation [2–5]. Similar behavior has also been observed in
spinor Bose gases, where the decay of Rabi oscillations be-
tween two condensates reveals the unravelling superflow[6].

Here we propose an extension of this concept to supercon-
ductors, arguing that when a charge condensate fails to sup-
port a topologically stable circulation, the resulting medium
forms a novel dielectric. Though our arguments enjoy general
application, they are specifically motivated by the Kondo in-
sulator, SmB6. While transport [7–9] and photoemission [10–
14] measurements demonstrate that SmB6 is an insulator with
topological surface states, the observation of bulk quantum
oscillations [15, 16], linear specific heat, anomalous thermal
and ac optical conductivity[17–20] have raised the fascinat-
ing possibility of a “neutral” Fermi surface in the bulk, which
paradoxically, exhibits Landau quantization. Landau quanti-
zation is normally understood as a semi-classical quantization
of cyclotron motion[21]. Rather general arguments tell us that
gauge invariance makes the Coulomb and Lorentz forces in-
separable: particles interact with the vector potential A via the
gauge invariant kinetic momentum π = (p− eA); the corre-
sponding equation of motion dπ/dt = q(E + v ×B) neces-
sarily contains both E and B as respective temporal and spa-
tial gradients of the underlying vector potential. Thus quasi-
particles which develop a Landau quantization in response to

FIG. 1. Illustration of topological stability. The stability of a su-
percurrent is analogous to topological stability of a string wrapped
around a surface. (a) The winding number of a string wrapped around
a rod is topologically stable and it can not be unravelled (b) A string
wrapped around the equator of a sphere unravels due to a lack of
topological stability.

the vector potential should also respond to its time-derivative,
the electric field E ≡ −∂A/∂t, forming a metal. In other
words, unless the bulk somehow breaks gauge invariance,
quantized cyclotron motion is incompatible with insulating
behavior. This reasoning motivates the hypothesis that SmB6

is a failed superconductor, formed from a topological break-
down of an underlying condensate.

General arguments tell us that the condition for the stability
of a superfluid is determined by the order parameter manifold
G/H formed between the symmetry group G of the Hamilto-
nian and the invariant subgroupH of the order parameter. The
absence of coherent bulk superflow requires that the first ho-
motopy class π1(G/H) 6= Z is sparse, lacking the infinite set
of integers which protect macroscopic winding of the phase.
This means that G/H is a higher dimensional non-Abelian
manifold, most naturally formed through the condensation of
bosons or Cooper pairs with angular momentum. Thus in
spinor Bose gases, an atomic spinor condensate lives on an
SU(2) manifold with π1(SU(2)) = 0: in this case the ob-
served decay of vorticity gives rise to Rabi oscillations[6].
Similarly, in superfluid 3He-A, an SO(3) manifold associ-
ated with a dipole-locked triplet paired state[4, 5], for which
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π1(SO(3)) = Z2 allows a single vortex, but no macroscopic
circulation in the bulk

In the solid state, the conditions for a topological failure
of superconductivity are complicated by crystal anisotropy. If
the condensate carries orbital angular momentum, it will tend
to lock to the lattice, collapsing the manifold back toU(1). On
the other hand, if the order parameter has s-wave symmetry,
its U(1) manifold allows stable vortices.

There are two ways around this no-go argument. The first,
is if there is an additional “isospin” symmetry of the order
parameter. For example, the half-filled attractive Hubbard
model[22], which forms a “supersolid” ground-state with a
perfect spherical (S2) manifold of degenerate charge density
and superconducting states, with pure superconductivity along
the equator and a pure density wave at the pole. In this special
case, supercurrents can always decay into a density wave.

A second route is suggested by crystal field theory, which
allows the restoration of crystalline isotropy for low spin ob-
jects, such as a spin 1/2 ferromagnet in a cubic crystal. Were
an analogous s-wave spin-triplet condensate to form, isotropy
would be assured. Rather general arguments suggest that the
way to achieve an s-wave spin triplet, is through the devel-
opment of odd-frequency pairing. The Gorkov function of a
triplet condensate has the form

d(1− 2) = 〈ψα(1)(iσ2~σ)αβψβ(2)〉. (1)

where i ≡ (~xi, ti), (i = 1, 2) are the space-time co-ordinates
of the electrons. Exchange statistics enforce the pair wave-
function d(X) = −d(−X) to be odd under particle ex-
change. Conventionally, d(~x, t) = −d(−~x, t) is an odd func-
tion of position, leading to odd-angular momentum pairs. By
contrast, an s-wave triplet is even in space and must there-
fore be odd in time, d(|x|, t) = −d(|x|,−t), as first proposed
by Berezinsky [23–28]. Odd-frequency triplet pairing has
been experimentally-established as a proximity effect in hy-
brid superconductor-ferromagnetic tunnel junctions[27, 28],
but for spontaneous odd-frequency pairing, we need to iden-
tify an equal-time order parameter. Following [26], we can
do this by writing the time derivative of the Gorkov function
using the Heisenberg equation of motion:

Ψ(1) =
∂d(1− 2)

∂t1

∣∣∣∣
1=2

= 〈[ψα(1), H](σ2~σ)αβψβ(1)〉.
(2)

The specific form of this composite operator depends on the
microscopic physics, but the important point to notice is that
it is an equal-time expectation value which defines a complex
vector order parameter Ψ = Ψ1 + iΨ2.

The case of SmB6 motivates us to examine a concrete ex-
ample of this idea. We consider a Kondo lattice of local mo-
ments (Sj) interacting with electrons via an exchange inter-
action of form H = J

∑
j Sj · ψ†(xj)~σψ(xj), for which

[ψα(x), H] = J(S(x) · ~σ)αγψγ(x), giving rise to an equal-
time, composite pair order parameter between local moments
and s-wave pairs [26, 29]

Ψ(x) ∝ 〈ψ↑(x)ψ↓(x)S(x)〉. (3)

In microscopic theory, it is actually more natural to con-
sider an antiferromagnetic version of composite order, formed
between the staggered magnetization and the pair density,
Ψ(x) = (−1)i+j+k〈ψ↑(x)ψ↓(x)S(x)〉 [25, 29–31]. These
details do not however affect the phenomenology.

We now consider a general Ginzburg Landau free energy
for an s-wave triplet condensate. Unlike a p-wave triplet, the
absence of orbital components to the order parameter consid-
erably simpifies the Ginzburg Landau free energy density[32],

f =
1

2m
|(−i~∇−2e ~A)Ψ|2+a|Ψ|2+b|Ψ∗ ·Ψ|2+d|Ψ·Ψ|2,

(4)
where ~A is the vector potential, minimally coupled to the or-
der parameter. Provided d > 0, the condensate energy is min-
imized when Ψ·Ψ = 0 and the real and imaginary parts of the
order parameter are orthogonal Ψ = |Ψ|(̂l + im̂). The triplet
odd-frequency order parameter thus defines a triad (̂l, m̂, n̂)

of orthogonal vectors with principal axis n̂ = l̂× m̂.
Eliminating the amplitude degrees of freedom [25, 32, 33],

the long-wavelength action has the following form

F =

∫
d4x

[
ρ⊥
2

(∂µn̂)2 +
ρs
2

(ωµ − qAµ)2 +
F 2
µν

16π

]
. (5)

Here q = 2e/~, and we have adopted the relativistic limit
of the action to succinctly include both electric and magnetic
fields[34], using the Minkowski signature (x2µ ≡ ~x2−x20 with
c = 1) and denoting Aµ = (−V, ~A) as the four-component
vector potential. The first two terms describe the condensate
action, where ωµ = m̂ · ∂µ l̂ is the rate of precession of the
order parameter about the n̂ axis. ρs is the nominal super-
fluid stiffness, while ρ⊥ determines the magnetic rigidity. The
last term is the field energy, where Fµν = ∂µAν − ∂νAµ
is the electromagnetic field tensor. The stiffness coefficients
ρ⊥, ρs are temperature dependent and are obtained by inte-
grating out the thermal and quantum fluctuations of the mi-
croscopic degrees of freedom. Under the gauge transforma-
tion (̂l + im̂) → eiφ(̂l + im̂) and qAµ → qAµ + ∂µφ, the
vectors l̂ and m̂ rotate through an angle φ about the n̂ axis,
so the angular gradient transforms as ωµ → ωµ + ∂µφ, and
thus the currents Jµ = qρs(ω

µ − qAµ) and free energy are
gauge invariant. The equivalence of electron gauge transfor-
mations and spin-rotation means that gauge transformations
are entirely contained within the SO(3) manifold of the order
parameter.

To analyze how the superflow is destablized, we examine
the screening of electromagnetic fields. From Ampères equa-
tion 4πJµ = ∂νF

µν , we observe if ∂νFµν = 0, correspond-
ing to uniform internal fields, then the supercurrent vanishes
Jµ = qρs(ω

µ − qAµ) = 0. In a superconductor, this condi-
tion is only be achieved by the complete exclusion of fields,
but here the texture of the composite order parameter is able to
continually adjust with the vector potential so that ωµ = qAµ,
enabling the current to vanish in the presence of internal fields.
To examine this further, we take the curl of Ampères equation,

(1− λ2L∂2)Fµν = q−1Ωµν , (6)
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FIG. 2. (a) Hybridization of 3 localized Majorana fermions per spin with 4 Majorana fermions of the conduction band leads to one gapless
Majorana Fermi surface. (b) Magnetic field phase diagram of a Skyrme insulator. (c) Landau quantization of the projected Majorana Fermi
surface.

where λL = (4πq2ρs)
−1/2 is the London penetration depth.

This modified London equation contains the additional term
Ωµν = ∂µων − ∂νωµ, which is the curl of the gradient of the
order parameter. In a conventional superconductor, ωµ = ∂µφ
is the gradient of the superconducting phase so Ωµν = 0 van-
ishes causing fields to be expelled. However, the quantity Ωµν

is finite, and can be written in the form Ωµν = n̂·(∂ν n̂×∂µn̂),
which is the Mermin-Ho relation[33] for the skyrmion density
of the n̂ field. From (6), we see that on scales long compared
with the penetration depth, where gradients of the field can
be neglected, the average skyrmion density locks to the av-
erage external field, Ωµν = qFµν , where the lines denote a
coarse-grained average. This relation expresses the screen-
ing of supercurrents by charged skyrmions; it also holds in
non-relativistic versions of this theory[34]. Moreover, phase
rotations around the n̂ axis are now absorbed into the elec-
tromagnetic field (Anderson Higg’s effect), leaving behind a
residual order parameter manifold with SO(3)/U(1) ≡ S2

symmetry. While the homotopy analysis yields no stable vor-
tices π1(S2) = 0, it does allow for the topologically stable
skyrmion solutions π2(S2) = Z that screen the superflow and
allow penetration of electric and magnetic fields. We shall ac-
tually consider lines of skyrmion , formed by stacking two di-
mensional skyrmion configurations, similar to vortex lines in
three dimensional superconductors. We call the correspond-
ing dielectric a “Skyrme insulator”.

Written in non-relativistic language, the equations relating
the skyrmion density to the penetrating fields are

1

2π
n̂ · (∂in̂× ∂jn̂) = −εijk

(
Bk
Φ0

)
1

2π
n̂ · (∂in̂× ∂tn̂) =

2e

h
Ei (7)

where Φ0 = 2π/q = h/2e is the flux quantum, and the
overline denotes a coarse-grained average over space or time.
The first term in (7) relates the areal density of skyrmions
to the magnetic field, allowing a magnetic field to penetrate
with a density of one flux quantum per half-skyrmion. The
second term in (7) describes the unravelling of supercurrents
due to phase slippage[2] created by domain wall or instan-
ton configurations of the order parameter. The integral of this
term over a time t and length L of the wire, counts the num-
ber of domain-walls N = − 2e

h (V2 − V1)t crossing the wire

in time t, in the presence of a finite voltage drop V2 − V1.
This voltage generation mechanism is similar to the devel-
opment of insulating behavior in disordered two-dimensional
superconductors[35]. We conclude that the failure of the
superconductivity does not reinstate a metal, which would
screen out electric fields, but transforms it into a dielectric
into which both electric and magnetic fields freely penetrate.

Unlike vortices, skyrmions are coreless, with short-range
interactions, so we expect them to form an unpinned liquid,
analogous to the vortex liquid of type II superconductors,
which restores the broken U(1) symmetry on macroscopic
scales. How then would we distinguish a Skyrme insulator
from a more conventional dielectric? Since the density of
(half) skyrmions, ns = B/Φ0 is proportional to a magnetic
field, one signature of a skyrmion liquid is a thermal conduc-
tivity κ ∝ H proportional to the applied field H . In a Drude
model, the drift velocity vd = µ(−∇T ) is proportional to the
temperature gradient and the skyrmion mobility µ. IfQ is the
heat content per unit length, then κ = QµnS , so that

κ =

(
µQ
Φ0

)
H. (8)

is proportional to the applied field.
A further consequence is the development of a low field

Meissner phase. In a fixed external magnetic field H, we con-
sider the Gibb’s free energy G = F −

∫
d3xH · B(x)/(4π).

Taking the fieldBz = nS(x)Φ0 to lie in the z-direction, where
nS = 1

2πΩ12 is the areal skyrmion density,

G =

∫
d3x

[
ρ⊥
2

(∂µn)2 +
(H − Φ0nS(x))2

8π
− H2

8π

]
,(9)

This corresponds to an O(3) sigma model in which the
skyrmions have a finite chemical potential µS = Φ0H/4π,
per unit length. Suppose the corresponding energy of a
skyrmion is εS/a per unit length, where a is the lattice spac-
ing, then providing H < Hc = 4πεS/Φ0a, the skyrmion
energy will exceed the chemical potential, and they will be
excluded from the fluid. In SI notation,

µ0Hc =
4

137

(
VS
ac

)
, (10)

where we have replaced e2

~c = 1/137 and εS = eVS . Below
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this field, skyrmions and field lines will be expelled, so the
material will exhibit a Meissner effect (Fig. 2(b)).

We now discuss the possible microscopic origin of this or-
der, and its possible application to SmB6. Various anomalous
aspects of insulating SmB6 can be speculatively associated
with the properties of a Skyrme insulator. The recent obser-
vation of an unusual thermal conductivity in insulating SmB6,
that is linear in field, κ ∝ H[19] is most naturally interpreted
as a kind of flux liquid expected in such a phase, a hypothesis
that could be checked by confirming if the anomalous thermal
conductivity lies perpendicular to the field direction.

A second test of this hypothesis, is the magnetic suscep-
tibility. In a heavy fermion compound, the order parame-
ter stiffness ρ is set by the Kondo temperature TK , ρ ∼
kBTK/a[25], where a is the lattice spacing, so the the energy
of a skyrmion is approximately kBTK per unit lattice spacing
a and eVK ∼ kBTK . For SmB6 we estimate VK = 1meV ,
and with a = 10−9m we obtain µ0Hc ∼ 10−4T or 1 Gauss,
comparable with the earth’s magnetic field. In a magnetically
screened (µ−metal) environment we expect SmB6 to become
fully diamagnetic with magnetic susceptibililty χ = −1/4π.

A microscopic model for the development of compos-
ite order in a Kondo lattice was studied by Coleman, Mi-
randa and Tsvelik[25, 36] (CMT) and recently revisited by
Baskaran[37]. This model allows us to pursue the micro-
scopic consequences of the failed-superconductivity hypoth-
esis. In a conventional Kondo lattice the local moments frac-
tionalize into charged Dirac fermions; the CMT model con-
siders an alternative fractionalization into Majorana fermions.
In the corresponding mean-field theory, spin 1/2 local mo-
ments S are represented as a bilinear S = − i

2 η̂ × η̂, where
η̂ = (η̂x, η̂y, η̂z) is a triplet of Majorana fermions. In this
representation, the Kondo interaction factorizes as follows:

HK [i] = JK(ψ̂†iασαβψ̂iβ) · Si

→
[
ψ̂†iα(σαβ · η̂i)Viβ + H.c

]
+ V†i Vi/JK , (11)

where JK is the Kondo interaction strength, c†iγ creates a con-
duction electron and [Vi]β = −JK2 〈(σβγ · ηi)ciγ〉 is a two-
component spinor. Vj determines the composite order via the
equation ~Ψ(x) = VT iσ2~σV . We have extended the model to
include spin-orbit coupling by incorporating a ‘p-wave’ form
factor into the definition of the conduction Wannier states ci,
derived from the angular momentum difference |∆l| = 1 be-
tween the heavy f and light d electrons[33, 38]. Our mean-
field calculations confirm that even in the presence of the spin-
orbit coupling, the ground-state energy is independent of the
orientation of the composite order parameter ~Ψ, so the system
remains isotropic[33].

In the CMT model, the conduction electrons, represented
by four degenerate Majorana bands, hybridize with the three
neutral Majorana fermions, gapping all but one of them which
is left behind to form a gapless Majorana Fermi sea [Fig 2 (a)].
This unique feature provides an appealing explanation of the
robust linear specific heat Cv = γT observed in this material.

The neutrality of the Majorana Fermi sea strictly eliminates
the DC conductivity, but the current and spin matrix elements
are actually proportional to energy, which will lead to a quasi-
particle AC conductivity of the form

Re[σ(ω)] =
σ0

1 + ω2τ2
ω2, (12)

where τ is the relaxation rate. The analogous matrix element
effect also suppresses the Koringa spin relaxation rate, giving
rise in the clean limit to a T 3 NMR relaxation rate[36]. When
we include the spin-orbit coupling, we find that an additional
topological Majorana surface state develops, reminiscent of
the surface states of superluid He-3. This interesting state
is protected by the crystal mirror symmetry and decouples
from the gapless bulk band[33]. Thus the insulating state re-
tains some of the surface conductivity of a topological Kondo
insulator[7, 39].

Perhaps the most puzzling aspect of SmB6 is the reported
observation of 3D bulk quantum oscillations. An approximate
treatment of the effect of a magnetic field on the Majorana
Fermi surface can be made by initially ignoring the skyrmion
fluid background. The dispersion of the Majorana band in a
field can then be calculated by projecting the Hamiltonian into
the low-lying Majorana band.

εMk,A = 〈φMk |H(k,A)|φMk 〉 =
1

2
(εek−eA + εhk+eA), (13)

where εek−eA and εhk+eA are the dispersion for electrons
and holes. Although the scattering off the triplet conden-
sate mixes the electron and hole components of the field,
giving rise to a neutral quasiparticles for which current op-
erator Jα = ∂εMk,A/∂Aα|A=0 = 0 vanishes, this cancella-
tion does not extend to the second derivative of the energy
∂2εMk,A/∂Aα

2|A=0 6= 0 which is responsible for the diamag-
netic response. This is a consequence of the broken gauge-
invariant environment provided by the Skyrme insulator. In
Fig. 2(c), we show the density of states of the Majorana band
in a magnetic field, demonstrating a discrete Landau quanti-
zation with broadened Landau levels. Since quantum oscilla-
tions originate from the discretization of the density of states
into Landau levels, we anticipate that a Majorana Fermi sur-
face does give rise to quantum oscillations. Moreover since
the Majorana Fermi surface originates predominantly from the
conduction electron band, it has a small effective mass, in ac-
cordance with quantum oscillation experiments[15, 16].

We note that triplet odd frequency pairing is expected to be
highly prone to disorder. Weakly disordered samples may re-
vert to a topological Kondo insulating phase in a majority of
the sample, accounting for the marked sample dependence,
and the discrepancies between samples grown by different
crystal growth techniques. Nevertheless, we expect that small
patches of failed superconductivity will still lead to enhanced
diamagnetism in a screened (µ− metal) environment.

Our results also set the stage for a broader consideration of
failed superconductivity in other strongly correlated materi-
als. There are several known Kondo insulators with marked
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linear specific heat coefficients, including Ce3Bi4Pt3[40],
CeRu4Sn6[41] and CeOs4As12[42] which might fall into this
class. We end by noting that Skyrme insulators may also be
relevant in an astrophysical context such as color supercon-
ductivity in white dwarf or neutron stars[43, 44].
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