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In the presence of Rashba spin-orbit coupling, magnetic field can drive a proximitized nanowire
into a topological superconducting phase [1, 2]. We study transport properties of such nanowires
in the Coulomb blockade regime. The associated with the topological superconductivity Majorana
modes significantly modify transport and lead to single-electron coherent transmission through the
nanowire - a non-local signature of topological superconductivity. In this work, we focus on the case
of strong hybridization of the Majorana modes with the normal leads. The induced by hybridization
broadening of the Majorana zero-energy states competes with the charging energy, leading to a
considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads.
We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission
coefficients, the geometric capacitance of and the induced superconducting gap in the nanowire.

Topological superconductors provide a promising plat-
form for fault-tolerant quantum computation [3–8].
These exotic electronic phases of matter are predicted to
host defects binding Majorana zero-energy modes which
obey non-Abelian braiding statistics [9–11]. Theory pre-
dicts that Majorana zero modes may be realized at the
ends of proximitized nanowires [1, 2, 12], and there is
mounting experimental evidence for their existence in
these systems [13–22].

Most of the proposals for Majorana-based topological
quantum computation involve mesoscopic islands with a
sizable charging energy which contain two or more Ma-
jorana modes (Majorana islands) [23–31]. Therefore, it
is important to understand the interplay of topological
degrees of freedom and charging energy of these islands.
Another motivation comes from the recent experiment by
Albrecht et al. [20] investigating the dependence of two-
terminal conductance through a Majorana island in the
Coulomb blockade regime, see Fig. 1a for the device lay-
out. The existing theory [32, 33] allows one to evaluate
the conductance of a Majorana island in the weak tunnel-
ing regime, gi � 1, using resonant level approximation
(here gi is the dimensionless normal-state conductance
of i-th junction, Gi = giG0, and G0 = e2/h is the con-
ductance quantum for spin-polarized electrons). In that
approximation, only the resonant level comprised of the
two degenerate ground states of the island is involved in
the formation of narrow Coulomb blockade conductance
peaks, see Fig. 1b.

The resonant-level approximation, however, is inappli-
cable to the strong-tunneling regime, corresponding to
one or both junctions approaching the reflectionless limit
(i.e. 1 − gi � 1). The width of the broadened reso-
nant level then becomes comparable to the topological
gap ∆P . Under this condition, the quasi-continuum of
excited states with energies above ∆P also contributes
to the electron transport across the island. The prob-
lem at hand is rather non-trivial. A similar setting in
the absence of superconductivity and in the limit of zero

spacing between the levels of quasi-continuum was inves-
tigated in Ref. [34]; in a symmetric device (g1 = g2),
the maximum conductance reaches only half of the con-
ductance quantum G0, and the width of the Coulomb
blockade peak scales proportionally to temperature T .
Below we demonstrate that, on the contrary, the maxi-
mum conductance through a Majorana island (∆P 6= 0)
equals G0. Thus, upon lowering the temperature below
∆P , the maximum two-terminal conductance should in-
crease. We also show that the superconductivity modi-
fies the off-peak conductance, which remains finite in the
limit T → 0. Therefore, the two-terminal conductance
G(Ng) = G(Ng, T → 0) through a Majorana island varies
smoothly with the dimensionless gate voltage Ng. In this
paper, we study the evolution of the G(Ng) function with
the conductances gi and ratio ∆P /EC .

The effective model for the proximitized nanowires
in the experiment [20] has the following key ingredi-
ents: Rashba spin-orbit coupling, Zeeman splitting and
proximity-induced pairing due to a nearby s-wave super-
conductor. In the appropriate parameter regime [1, 2],
applied magnetic field can drive the system into the
topological state which is equivalent to a spinless p-
wave superconductor supporting Majorana zero-energy
modes [35]. In order to probe transport properties of
such a state, proximitized nanowires in Ref. [20] were cou-
pled to normal leads via gate-tunable single-channel con-
tacts, see Fig.1a. If coupling is weak, electron transport
at the charge degeneracy point occurs via a resonance
between the two ground states differing by the charge
parity. Upon “opening” the contacts, the width of the
resonance increases and may become comparable to the
excitations gap in the proximitized wire. In the strong
tunneling regime (i.e. weak reflection at the contacts)
the description based solely on the ground-state reso-
nance [32, 33] is no longer valid. Henceforth, we focus on
the strong tunneling regime. In this case, it is convenient
to use the bosonization technique [36–38] which allows
one to take into account the collective charge fluctuations
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and superconducting pairing non-perturbatively. Weak
reflection at the junctions can be included then using
perturbation theory. The effective model for a proximi-
tized nanowire in the topological regime in the presence
of Coulomb blockade can be written as

H = HNW +HC +HP +HB , (1)

HNW =
v

2π

∫ ∞
−∞

dx
[
(∂xθ)

2 + (∂xφ)2
]
, (2)

HC =EC(N−Ng)2 =EC

(
φ(x2)−φ(x1)

π
−Ng

)2

, (3)

HP = −∆PD

2πv

∫ x2

x1

dx cos 2θ , (4)

HB = −
∑
i=1,2

Dri cos 2φ(xi) . (5)

Here v, ∆P , and D are the Fermi velocity in the
nanowire, induced superconducting gap, and UV cutoff
energy, respectively. Charging energy HC depends on
the charge transferred into the Majorana island via the
two junctions, N = [φ(x2) − φ(x1)]/π, with the bare
charging energy EC = e2/2CΣ being determined by the
geometrical capacitance of the proximitized nanowire
CΣ (including its superconducting shell). The barriers
at x1,2 are described by the reflection amplitudes
r1,2, respectively. Here we implicitly assume that the
superconducting shell renormalizes level spacing in
the nanowire so that the spacing becomes negligibly
small. In this respect, our model is similar to the
one of Refs. [34, 39]. The term HP accounts for the
superconducting proximity effect.

Let us now consider the case EC � ∆P [40] and
r1,2 � 1. In this limit, term HC of Eq. (3) pins the
mode φ(x2) − φ(x1) responsible for changing the charge
of the island. Integrating out this massive mode, one
obtains an effective boundary Hamiltonian [39] valid in
energy band E � EC ,

HB=−
√
c0ECD r(Ng) cos [φ(x2)+φ(x1)−α(Ng)] . (6)

Here α(Ng) is unimportant phase, parameter r(Ng) is

r(Ng)=
√
r2
2 + r2

1 + 2r2r1 cos(2πNg) sgn(cosπNg) , (7)

c0 = eC/2π3, and C = 0.5772 is the Euler’s con-
stant. The coupling r(Ng) is relevant and grows under
the Renormalization Group (RG) procedure according
to dr/d` = r/2 until either the running cut-off D reaches
∆P or the boundary perturbation HB reaches the strong-
coupling limit HB ∼ D. The latter occurs at D ∼ Dc

defined as

Dc ∼ Γ0(Ng) =
2eC

π2
ECr

2(Ng), (8)

FIG. 1. (Color online) Panel (a): Schematic plot of the device.
Panel (b): Conductance G as a function of the dimensionless
gate voltage Ng. In a symmetric device, g1 = g2 ≡ g, con-
ductance reaches G0. Solid (black) curve: Coulomb blockade
peak at g � 1 is a Lorentzian [33] of width given by Eq. (23).
Dashed/solid (red) curve: G(Ng) at intermediate values of g
such that ∆P /EC � 1 − g � 1; see Eq. (21) for the width
of the maximum and Eq. (22) for the crossover to the weak-
tunneling limit. Dot-dashed (blue) curve: G(Ng) of a sym-
metric device in the strong-tunneling limit, EC(1− g)� ∆P .
Conductance approaches the unitary limit, exhibiting weak
Ng-dependent oscillations, see Eq. (20).

where we chose the numerical coefficient in accordance
with Ref. [34]. The linear conductance strongly depends
on the gate voltage as long as Γ0(Ng) � ∆P . In
the opposite limit, ∆P � Γ0(Ng), conductance only
weakly depends on Ng, and approaches the unitary limit.

We start by considering the limit Γ0(Ng)� ∆P which
(at sufficiently large r1 and r2) is realized far away from
the charge degeneracy points. Upon reducing the band
width D in the course of RG flow to D ∼ Dc, the com-
bination of fields φ(x1) + φ(x2) becomes pinned by the
backscattering term Eq. (6). At smaller energy scales,
D � Γ0(Ng), the dynamics of φ(x1) and φ(x2) con-
sists of hops between the equivalent minima of energy
Eq. (6) which defines the two-dimensional “landscape”
in the plane of φ(x1), φ(x2). The least-irrelevant hop-
ping term in the effective low-energy Hamiltonian shifts
φ(x1) + φ(x2) by 2π,

H̃B=−λ(D)D cos
[
θ(x+

2 )−θ(x−2 )+θ(x+
1 )−θ(x−1 )

]
. (9)

Here the fields θ(x−2 , τ) and θ(x+
1 , τ) refer to the proxim-

itized nanowire whereas points x−1 and x+
2 belong to the
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leads, see Fig. 1a. At the crossover energy scale, D ∼ Dc,
the running constant λ(Dc) ∼ 1, and it decreases upon
reducing the band width. The RG flow for λ in the do-
main Γ0(Ng) � D � ∆P is controlled by dλ/d` = −λ
and yields λ(D) ∼ λ(Dc)D/Dc ∼ D/Dc. The dynam-
ics of fields θ(x1,2) on energy scales E . D is governed
by Eqs. (2), (4), and (9) with the boundary conditions
∂xθ(x

±
1,2) = 0, compatible with Eq. (9).

Hamiltonian (9) corresponds to an electron transfer
into one end of the proximitized wire, while another elec-
tron is taken out from the opposite end. This way, a
single electron charge e is transferred between the leads.
The corresponding current operator reads

I=eλ(D)D sin
[
θ(x+

2 )−θ(x−2 )+θ(x+
1 )−θ(x−1 )

]
. (10)

Using it, one may evaluate the two-terminal conductance
at temperatures T � Γ0(Ng) by means of Kubo for-
mula [41],

G =
1

2T

∫ ∞
−∞

dtΠ

(
it+

1

2T

)
, Π(τ) = 〈I(τ)I(0)〉 (11)

(here τ is imaginary time). In the intermediate range of
temperatures, ∆P � T � Γ0(Ng), one may ignore the
pairing interaction Eq. (4) and use the free-field action
to determine the time evolution of the current operator
Eq. (10). The result for the conductance G(Ng, T ) is

G(Ng, T )

G0
= c1

T 2

Γ2
0(Ng)

. (12)

Finding the numerical coefficient c1 here is beyond the
accuracy of the RG treatment, but it is known from the

exact solution, c1 = π2

6 [34].
At lower temperatures, T � ∆P , fluctuations of the

field θ(x, τ) within the proximitized wire (x1 < x < x2)
are suppressed by the superconducting pairing term,
Eq. (4). To evaluate the conductance, we may reduce the
band width down to D ∼ ∆P , yielding λ(∆P ) ∼ ∆P

Dc
in

Eq. (9), where now fields θ(x+
1 , τ) and θ(x−2 , τ) are pinned

to a minimum of pairing energy. With these fields being
pinned, Eq. (9) describes tunneling of an electron be-
tween points x−1 and x+

2 belonging to the opposite leads.
The corresponding tunneling action takes the form

SB=

∫
dω

2π

|ω|
2π
|θ−|2−

∫ 1/T

∆−1
P

dτλ(D)Dcos
√

2θ−, (13)

where θ− = [θ(x+
2 ) − θ(x−1 )]/

√
2. Note that the bound-

ary perturbation term in Eq.(13) becomes marginal now
(i.e., dλ/d` = 0), and the problem at hand maps onto
weak tunneling of a free fermion across an impurity. Us-
ing Kubo formula (11), one can readily calculate two-
terminal conductance to find

G(Ng)
G0

= c2 ·
∆2
P

Γ2
0(Ng)

, c2 ≈ π2 . (14)

Note that the results obtained in the adjacent tempera-
ture intervals, Eqs. (12) and (14), match each other at
T ∼ ∆P .

This temperature-independent conductance 14 is due
to elastic cotunneling processes in which an electron en-
ters the BCS condensate at one end of the wire with
another electron exiting the condensate from its oppo-
site end, leaving no excitations behind. The correspond-
ing low-energy Hamiltonian has the following form in the
fermion representation:

H̃B ≈ −
√
c2πv

∆P

Γ0(Ng)
ψ†(x+

2 )ψ(x−1 )γ1γ2 + h.c.. (15)

Here γ1 and γ2 are the Majorana fermion operators lo-
calized, respectively, at x1 and x2, while ψ†(x+

1 ) and
ψ†(x+

2 ) are the electron operators in the correspond-
ing leads. Equation (15) describes elastic cotunneling
through Majorana zero modes similarly to the weak cou-
pling limit [32, 33], and allows one to re-derive Eq. 14.
The value of the numerical coefficient c2 in Eq. 14 is
found by obtaining Eq. 15 within a controllable re-
fermionization routine [42].

We now consider weak-reflection case, Γ0(Ng) � ∆P ,
which is realized in a symmetric device at a gate voltage
close to a charge degeneracy point, or at any gate volt-
age if the reflection amplitudes r1,2 are sufficiently small
(and not necessarily equal each other). At intermediate
energy scale, EC � E � ∆P , the pairing interaction
Eq. (4) and the boundary Hamiltonian Eq. (6) can be
treated perturbatively. Thus, the only constraint on fluc-
tuations of φ(x) and θ(x) within the proximitized wire is
the pinning of the combination of fields φ(x2)−φ(x1) by
charging energy. As follows from Ref. [34], the conduc-
tance in the regime T � ∆P � Γ0 is G ≈ G0/2 [43].

Upon reducing the temperature below ∆P , the pair-
ing interaction (4) suppresses the fluctuations of θ(x)
within the proximitized segment, i.e. ∂τθ(x, τ) = 0.
Thus, the condition ∂xφ(x1,2, τ) = 0 is enforced at the
ends of the segment. To evaluate conductance in the
limit of no backscattering (Γ0(Ng) → 0), we integrate
out modes away from x1 and x2 to obtain the bound-
ary action in terms of the relevant degree of freedom
φ+ = (φ(x1) + φ(x2))/

√
2,

S0 =

∫ ∆P

0

dω

2π

|ω|
2π
|φ+|2 . (16)

The dc conductance is obtained then by using Kubo for-
mula Eq. (11); current operator in this limit is given by

I =
e

2π
[∂tφ(x1) + ∂tφ(x2)] =

e

2π

√
2∂tφ

+ . (17)

Upon evaluating Π(τ) = e2

2π2 〈∂τφ+(τ)∂τ ′φ
+(τ ′)〉τ ′=0 us-

ing Eq. (16), we find that G(Ng) = G0 in the absence of
backscattering. The full quantized value of the conduc-
tance G(Ng) is in agreement with the notion of single-
electron resonant tunneling via a Majorana state [32, 33].
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One may notice that the conductance grows by a factor
of two once temperature is lowered across the scale set
by ∆P . This prediction can be easily verified in current
experiments on proximitized nanowires [19, 20].

To account for backscattering, we use Eq. (6) with the
bandwidth D ∼ ∆P ,

HB=−
√
c4EC∆P r(Ng) cos(φ(x1)+φ(x2)−α(Ng)) (18)

with c4 ∼ 1. At E . ∆P the long-wavelength fluctu-
ations within the proximitized wire (i.e., in the interval
x1 < x < x2) are gapped out by the pairing term (4).
As a result, the boundary term (18) becomes marginal
(dr/d` = 0) and remains small. The backscattering term
Eq. (18) augments the free-field Hamiltonian and modi-
fies the boundary action,

S = S0 −
∫ T−1

∆P
−1

dτ
√
c4EC∆P · r(Ng) cos(

√
2φ+) . (19)

One can notice that the problem at hand maps onto the
single-impurity model in the weak-backscattering limit,
characterized by strong fluctuations φ+ of charge passing
through the nanowire. This is to be contrasted with the
strong-pinning limit, Eq. (13).

The evaluation of the correction to the conductance
δG within the second-order perturbation theory in r(Ng),
see, e.g., Refs. [44, 45], yields

G(Ng)−G0

G0
∼ −Γ0(Ng)

∆P
, (20)

where Γ0(Ng) is defined in Eq. (8). The numerical
prefactor in Eq. (20) is beyond the accuracy of the
RG procedure. The maximal value of Γ(Ng) equals
Γmax = (2eC/π2)EC |r1 + r2|2 and is reached at every
integer Ng. If the reflection amplitudes r1,2 are small
enough so that Γmax � ∆P , then Eq. (20) is applicable
at all gate voltages. In the opposite case, Eq. (20)
may be applicable in the vicinity of the half-integer
values of Ng, provided the setup is almost symmetric,
EC |r1 − r2|2 � ∆P .

The developed scaling theory allows us to establish the
evolution of the G(Ng) function upon increase of the re-
flection amplitudes. The two-terminal conductance os-
cillations with Ng are fully washed out by quantum fluc-
tuations if r1 or r2 is zero. At small but finite ampli-
tudes, Γmax � ∆P , oscillations are weak, see Eq. (20)
and Fig. 1b. We will sketch further evolution of G(Ng)
assuming a symmetric setup, r1 = r2 ≡ r. Once r be-
comes large enough so that Γmax � ∆P , the applicability
of Eq. (20) is confined to the vicinities of the half-integer
values of Ng. One may use Eq. (14) to estimate con-
ductance away from these degeneracy points. Matching
Eqs. (20) and (14) with each other, we find

η ∼ [∆P /EC(1− g)]1/2 (21)

for the width of the conductance maxima, see Fig. 1b.
Further increase of the reflection amplitudes eventu-

ally results in the crossover to a weak-tunneling regime,
g1,2 � 1. Considering it, we will still concentrate on a
symmetric setup, g1 = g2 ≡ g. At ∆P = 0, quantum
fluctuations of charge of the island result in the loga-
rithmic renormalization of the transmission amplitudes
of the two junctions connecting it with the leads [34].
Due to this “charge Kondo” renormalization, the trans-
mission amplitudes reach value ∼ 1 at the energy scale
TK ≈ EC exp(−π2/2

√
g), if Ng is tuned to a narrow re-

gion, |Ng−1/2| . TK/EC . The presence of ∆P does not
prevent the aforementioned logarithmic renormalization
as long as ∆P � TK . At energy scales below TK we may
use the strong-tunneling RG theory developed above,
with the proper replacement of the parameters. Namely,
in Eq. (6) we change EC → TK and modify r(Ng) from
the one given in Eq. (7) to r(Ng) ∼ (EC/TK)(Ng− 1/2).
As the result, energy scale Γ0(Ng) of Eq. (8) is changed

to Γ̃0(Ng) ∼ (E2
C/TK)(Ng − 1/2)2. We may use Γ̃0(Ng)

to estimate the conductance with the help of Eqs. (20)
and (14). It easy to see that the maxima of G(Ng) under
the considered conditions have width

η ∼
√

∆PTK/E2
C , ∆P . TK . (22)

At even smaller g, the gap ∆P exceeds TK and cuts off
the logarithmic renormalization of the transmission am-
plitudes before those reach the strong-tunneling limit. As
the result, G(Ng) corresponds to a conventional Breit-
Wigner resonance [33], with the width defined by the
properly renormalized tunneling amplitudes [34],

η ∼ ∆P

EC

g/4π

cos2
[
π
2

ln(EC/∆P )
ln(EC/TK)

] , ∆P & TK . (23)

Notice that Eq. (22), valid at an intermediate range of
conductances (defined by the ratio ∆P /EC), matches
the strong- and weak-tunneling results, Eqs. (21) and
(23), at TK ∼ EC and TK ∼ ∆P , respectively [46].

Coulomb blockade of electron transport across a
normal-state metallic island results in oscillations of the
conductance G(Ng) with the gate voltage. The pe-
riodicity of oscillations corresponds to the increment
e of the charge Ng induced on the island by the
gate. Conductance accross a proximitized wire in the
topologically-nontrivial superconducting state exhibits
oscillations with the same period. Yet, the behavior of
the function G(Ng) is drastically different. This becomes
especially clear in the case of a symmetric device with two
identical single-channel junctions. In the normal state,
G(Ng) is controlled by an unstable two-channel Kondo
fixed point. The conductance maxima scale linearly with
temperature T , reaching value G = G0/2 and becoming
infinitely narrow in the limit T → 0. On the contrary,
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conductance maxima in G(Ng) across a proximitized wire
reach value G = G0 and retain finite width at T → 0.
We have demonstrated that the corresponding transport
problem is mapped onto single-electron tunneling at any
values of the bare conductance g of the junctions, and
found the evolution of the G(Ng) with the increase of g
from g � 1 to g → 1.

Advances in experiments with metal-semiconductor
hybrids allowed recently to map out the conductance of a
normal-state metallic island connected to leads by single-
channel junctions [47, 48] and confirm many of the pre-
dictions of the corresponding theory [34]. The parallel
development of the proximitized nanowires [20] set the
stage for the extension of the strong-tunneling Coulomb
blockade experiments into the domain of the topological
superconductivity.

This work is supported by DOE contract DEFG02-
08ER46482 (LG).
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