

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Amplified Optomechanical Transduction of Virtual Radiation Pressure

Mauro Cirio, Kamanasish Debnath, Neill Lambert, and Franco Nori Phys. Rev. Lett. **119**, 053601 — Published 31 July 2017 DOI: 10.1103/PhysRevLett.119.053601

Amplified opto-mechanical transduction of virtual radiation pressure

Mauro Cirio,¹ Kamanasish Debnath,^{1,2} Neill Lambert,^{1,*} and Franco Nori^{1,3}

¹CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan

²EPFL, CH-1015 Lausanne, Switzerland

³Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Dated: June 15, 2017)

Here we describe how, utilizing a time-dependent opto-mechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultra strongly-coupled light-matter system. We calculate the thermal noise tolerated by this measurement scheme, and discuss an experimental setup in which it could be realized.

PACS numbers: 42.50.Pq, 85.25.-j, 07.10.Cm

Introduction.— When probing a physical system, a competition can emerge between the intensity of the response induced and the information gained. This is especially true in quantum systems, where internal coherences are very fragile against back-action noise [1, 2]. Strongly-coupled composite systems, such as light and matter in a cavity quantum electrodynamic (QED) device [3, 4], introduce additional challenges in this regard. Such systems have been traditionally realized with atoms in highly-reflective optical cavities [5, 6], semiconductors coupled to microcavities [7–9], and with artificial atoms coupled microwave cavities in circuit QED [10–14]. Very recently, the semiconductor and superconductor examples of such devices have reached the ultra-strong and deep-strong coupling regimes [7–13, 15–20] characterized by interaction strengths comparable to the bare lightmatter resonant energies, and by states in which matter is dressed by "virtual photons".

The term "virtual" implies that specific actions must be taken to make such excitations observable. For example, highly invasive schemes have been designed to cause "virtual photons" to be emitted as extra-cavity radiation by non-adiabatic modulation of the interaction between light and matter [21-23] or by inducing transitions outside the system's interacting Hilbert space [23–27]. By doing this, all internal coherence between light and matter present in the initial state is destroyed. Very recently, it became clear one can potentially observe the presence of these ground-state excitations while inducing only a minimal back-action (i.e., transitions between eigenstates of the system one is trying to measure [1, 28, 29]) on the system. In the language of quantum optics, such measurements are called non-demolition [1]. For example, in the seminal work of Lolli *et al.* [28], an ancillary qubit is used to investigate the ground state of an ultra-strongly coupled light-matter system with minimal disturbance. However, there, to achieve a large signal-to-noise ratio, they require many atoms in the cavity. In addition, they rely on an ultra-strong coupling between the light-matter system and the probe, which induces back-action effects. In turn, non-negligible loss in the light-matter system are needed to return it to the ground state after an accidental

disturbance.

Here, we propose a method in which the interaction with the probe is weak and commutes with the system's Hamiltonian. The consequent evasion of quantum backaction noise removes the need for loss and leads to a high signal-to-noise ratio for realistic parameters, even in the presence of only a single atom in the cavity. In addition, this method combines two existing technologies in an unique way. In particular, we employ a hybrid matter-cavity-mechanical device [30-44] where a mechanical mode, acting as the probe, couples via radiation pressure to a cavity-QED system (in which resonant matter ultrastrongly interacts with the confined light). While the photons dressing the ground state of the stronglycoupled cavity-QED system can displace the mechanical mode through a "virtual radiation pressure" [4, 45] effect (akin to variations of the Casimir force experiment [46– 50), such a force is typically extremely weak. Here we show that, even with a relatively weak opto-mechanical probe interaction strength, a modulation of the cavitymechanical probe (i.e., opto-mechanical) interaction at the probe frequency can amplify the transduction of these virtual excitations into an observable displacement of the mechanical probe.

We begin with a description of the composite system, part by part, and intuitively derive the requirements for the detection of virtual radiation pressure effects with such a mechanical probe at zero temperature. We then give an analytical quantitative analysis, which includes thermal noise affecting both light-matter and mechanical systems. As a result, we estimate the strength of the opto-mechanical coupling, and the bounds on the thermal noise, needed to resolve the effect within the standard quantum limit. Finally, we outline several explicit physical systems in which our proposal could be realized.

Ultra-strong coupling of light and matter. — The interaction between (a mode of) light confined in a cavity and a matter degree of freedom (modelled as a two-level system) is described by the quantum Rabi model ($\hbar = 1$),

$$H_{\rm R} = \omega a^{\dagger} a + \frac{\omega}{2} \sigma_z + \Omega (\sigma_+ + \sigma_-) (a + a^{\dagger}) \quad , \qquad (1)$$

where the fundamental mode of the cavity, with frequency ω , is described by the annihilation operator a, the two-level system (assumed resonant with the cavity) is described by the Pauli operator σ_z . In this model, the light-matter interaction is fully characterized by the normalized coupling $\eta \equiv \Omega/\omega$. In the weak-coupling regime $(\eta \ll 1)$, terms which do not conserve the total free excitation number can be neglected, leading to the Jaynes-Cummings interaction. Therefore, the ground state $|G\rangle$ of the system does not contain photons, i.e., $\bar{n}_{\rm GS} = \langle G | a^{\dagger} a | G \rangle = 0$. However, in the ultrastrongcoupling regime $(\eta > 0.1)$ hybridization effects play an important role and these qualitatively change the nature of the ground state (GS) which becomes dressed by virtual photons; e.g., second-order perturbation theory in η implies

$$\bar{n}_{\rm GS} = \langle G | \, a^{\dagger} a \, | G \rangle \approx \frac{\eta^2}{4} \quad .$$
 (2)

Importantly, when weakly coupled to a low-temperature environment, the system relaxes to the hybridized ground state $|G\rangle$, out of which photons cannot escape [16, 51, 52]. To observe such virtual excitations, we now introduce a mechanical probe. We show that active modulation of the probe's interaction with the above system allows for an amplified measurement of the ground-state photons.

Opto-mechanical interaction. – The opto-mechanical interaction of a mechanical probe with the light-matter system described above can be most easily understood through the picture of a Fabry-Perot cavity with a mechanically-compliant mirror coupled to a spring with frequency ω_m . This frequency is usually much smaller than the cavity frequency ω . The interaction between photons inside the cavity and the mirror displacement is essentially radiation pressure, i.e., momentum kicks on the mechanical spring due to the bouncing of photons off the mirror. It can be described, to lowest order in the displacement of the mirror, as

$$H = H_R + \omega_m b^{\dagger} b + g_0 a^{\dagger} a (b + b^{\dagger}) \quad , \tag{3}$$

where b is the annihilation operator of the mechanical mode, and g_0 is the vacuum opto-mechanical coupling strength. Note that, when matter is within the cavity, a third-order interaction term can arise because of modulation of the light-matter coupling strength Ω as the cavity length varies in time [36]. Here we neglect that interaction, as it can be made negligible (while still maintaining a strong light-matter dipole coupling) by moving the position of the matter inside the cavity slightly away from the maximum of the electric field. Thus, here we focus on the standard opto-mechanical interaction term, for which the coupling amplitude g_0 corresponds to the frequency shift of the cavity when the mechanical displacement is equal to its zero-point motion x_{zp} [31]. Because of this interaction, in the absence of matter, an average of n photons in the cavity exerts a radiation-pressure force $P_n = ng_0/x_{zp}$ on the mirror, inducing a displacement

$$|\langle x \rangle_n| = 2n\eta_m x_{zp} \quad , \tag{4}$$

as a function of the normalized opto-mechanical coupling $\eta_m \equiv g_0/\omega_m$. Let us now provide some intuition on how the situation changes when an atom interacts with the cavity field. At sufficiently low temperatures, the cavity-QED composite system is in its ground state which still exerts a (virtual) radiation pressure on the mirror, readily found by setting $n = \bar{n}_{\rm GS}$, giving

$$|\langle x \rangle_{\rm GS}| = \frac{\eta^2}{2} \eta_m x_{zp} \quad . \tag{5}$$

To resolve the effect within the standard quantum limit, we need to impose $|\langle x \rangle_{\rm GS}| > x_{zp}$, which leads to

$$\eta_m > \frac{2}{\eta^2} \quad . \tag{6}$$

While it is now possible for many different cavity-QED systems to reach the ultrastrong coupling regime $\eta \sim 0.1$, most realizations of opto-mechanical systems tend to be in the weak coupling regime $\eta_m \ll 1$, limiting the practicality of Eq. (6) (although proposals to achieve stronger couplings do exist [35, 53–60]).

However, we can overcome this limitation by modulating the opto-mechanical coupling $g_0 \mapsto g_0(t)$, akin to recent proposals to enhance effective Kerr nonlinearities with a modulated opto-mechanical coupling [61], to enhance the readout of qubits with a modulated longitudinal coupling [62], or by modulating other parameters of the atom-cavity system [63–65]. Intuitively, this modulation effectively turns radiation pressure into a builtin (photon-number-dependent) resonant driving force. With this interpretation in mind, by considering a modulation at the mechanical frequency

$$g_0 \mapsto g_0 \cos \omega_m t \quad , \tag{7}$$

we immediately find [66] that the mechanical displacement is enhanced by the factor $|\chi(\omega_m)|/|\chi(0)| = \omega_m/\Gamma_m$ in terms of the frequency-dependent mechanical susceptibility $\chi(\omega)$ and the mechanical decay rate Γ_m . This effectively corresponds to the substitution $\eta_m \mapsto \bar{\eta}_m$, (with $\bar{\eta}_m = g_0/\Gamma_m$) in Eq. (6), obtaining the much more realistic requirement

$$\bar{\eta}_m > \frac{2}{\eta^2} \quad . \tag{8}$$

This suggests the amplified observation of ground-state excitations is feasible, and constitutes our first main result. While this result holds for zero temperature, at small but finite temperatures, correlations between the system and the mechanical probe arise, which can complicate the problem of distinguishing the small thermal occupation of the light-matter system from virtual excitations.

To understand in detail the competition between ground-state occupation and unwanted environmental influence, we perform a detailed analysis, based on an analytical low-energy effective model. This allows us to estimate temperature-dependent bounds for the observation of the virtual excitations. In addition, we will show that the protocol presented here does not amplify the intrinsic mechanical thermal noise, which we expect to be the most relevant in realistic implementations (wherein the mechanical probe frequency is much smaller than the strongly-coupled light-matter parameters).

Effective model. — With the modulation of the optomechanical coupling described in Eq. (7), and in a frame rotating at the mechanical frequency ω_m the Hamiltonian in Eq. (3) becomes

$$H = H_R + \frac{g_0}{2} a^{\dagger} a (b + b^{\dagger}) \quad , \tag{9}$$

where we performed a rotating wave approximation (see Appendix for the non-resonant driving case).

A Born-Markov perturbative master-equation treatment of the interaction with the environment for the system in Eq. (9) can be written as $\dot{\rho} = -i[H,\rho] +$ $\mathcal{L}_R(\rho) + \mathcal{L}_m(\rho)$ [51, 67], where the term \mathcal{L}_m = $\Gamma_m \left(\bar{n}_m \mathcal{D}[b^{\dagger}](\rho) + (1 + \bar{n}_m) \mathcal{D}[b](\rho) \right)$ is the Liouvillian, accounting for the bath of the mechanical degree of freedom, as a function of its thermal occupation number \bar{n}_m and where $\mathcal{D}[O](\rho) = \frac{1}{2}(2O\rho O^{\dagger} - \rho O^{\dagger}O - O^{\dagger}O\rho)$. The Liouvillian \mathcal{L}_R depends on the environments coupled to the photonic and matter systems and, importantly, in the ultrastrong coupling regime, causes transitions between dressed states which diagonalize the light-matter Hamiltonian [16, 51]. We now assume a regime where the population of the light-matter system is restricted to its lowest (dressed) energy states, i.e. the ground $|G\rangle$ and first two excited states $|\pm\rangle$. Under this approximation, we can project H to this low-energy subspace. Not surprisingly, in this limit, the model can be given a bosonic representation under the replacement $|G\rangle\langle\pm|\mapsto a_+$. In this way, it is possible to provide an analytical treatment of the model, including a self-consistent quantification of the low-temperature effects. Under these assumptions, to second order in η , the Hamiltonian reads

$$H = \omega_{+}a_{+}^{\dagger}a_{+} + \omega_{-}a_{-}^{\dagger}a_{-} + \frac{g_{0}}{2}\hat{\alpha}(b+b^{\dagger}) \quad , \tag{10}$$

where $\omega_{\pm} = \omega(1\pm\eta)$, $\hat{\alpha} = (\alpha_{+}a_{+}^{\dagger}a_{+} + \alpha_{-}a_{-}^{\dagger}a_{-} + \xi)$, with $\alpha_{\pm} = \frac{1}{2} \mp \eta/4$, $\xi = \eta^2/4$, and where we neglected terms rotating at frequencies 2ω and $2\eta\omega$ in the opto-mechanical interaction term ([68], section I). Interestingly, this allows for an effective decoupling of the modes a_{+} and a_{-} . In addition, this result enlarges the domain of our analysis ([68], section III) to physical systems with a priori bosonized matter degrees of freedom (as is typical for

many-particle systems like quantum wells). The Hamiltonian in Eq. (10) shows a critical feature of our scheme: the interaction between the mechanical probe and the system's Hamiltonian commute, allowing for quantum non-demolition measurements. Without this condition, one would need to rely on further dissipation processes to reduce back-action noise [28].

In the linearized approximation we are considering, a completely equivalent master equation for the coupled system can naturally be written ([68], section II) in terms of three independent baths as

$$\dot{\rho} = -i[H,\rho] + \mathcal{L}_{+}(\rho) + \mathcal{L}_{-}(\rho) + \mathcal{L}_{m}(\rho) \quad , \qquad (11)$$

where $\mathcal{L}_{\pm}(\rho) = \kappa_{\pm} \left(\bar{n}_{\pm} \mathcal{D}[a_{\pm}^{\dagger}](\rho) + (1 + \bar{n}_{\pm}) \mathcal{D}[a_{\pm}](\rho) \right)$, and κ_{\pm} are linear combinations of the decay rates of the light-matter subsystems calculated at the frequencies ω_{\pm} . For simplicity, in the following we will assume that the occupation numbers are equal $\bar{n}_{\pm} = \bar{n}$ (see [68] for details and a more general analysis).

Enhanced readout.— From Eq. (10), note that the force acting on the mechanical mode $P = g_0 \hat{\alpha}/2x_{zp}$ has two contributions: the usual radiation pressure (dependent on the number of normal excitations in the lightmatter system) and virtual radiation pressure (proportional to ξ , accounting for ground state effects). Following Eq. (11), the Heisenberg equation of motion for the dimensionless quadrature of the mechanical mode $|\langle \tilde{X} \rangle| = |\langle i(b^{\dagger} - b) \rangle|/\sqrt{2}$ in the steady state leads to

$$|\langle \tilde{X} \rangle| = \sqrt{2}\bar{\eta}_m(\alpha_+\bar{n}_+ + \alpha_-\bar{n}_- + \xi), \qquad (12)$$

which is the expected result from our intuitive analysis in the introduction: the modulation of the coupling induces a displacement of the mechanical probe with an amplified amplitude proportional to $\bar{\eta}_m = g_0/\Gamma_m$. As implicitly done throughout the article, we omitted zero-point energy contributions [69]. As shown by this expression, the total displacement has two physically-different contributions, i.e., $|\langle \tilde{X} \rangle_{\rm GS}| = (\xi/\alpha) |\langle \tilde{X} \rangle|$ (accounting for virtual radiation-pressure effects) and $|\langle \tilde{X} \rangle_{\bar{n}}| = (1 - \xi/\alpha) |\langle \tilde{X} \rangle|$ (accounting for finite temperature effects), where $\alpha =$ $\langle \hat{\alpha} \rangle = \alpha_{+}\bar{n}_{+} + \alpha_{-}\bar{n}_{-} + \xi$.

Signal-to-noise ratio. — To analyse the interplay between the two different contributions to the displacement and to what degree they can be resolved, both from one another and from the mechanical systems own vacuum fluctuations (the standard quantum limit), we use the ratio $F \equiv |\langle \tilde{X} \rangle| / \delta \tilde{X}$, where $(\delta \tilde{X})^2 = \langle \tilde{X}^2 \rangle - \langle \tilde{X} \rangle^2$, a general analytical expression of which is shown in [68] (section III.B). At finite temperatures, the mechanical probe and the light-matter system become correlated, leading to a non-trivial expression for this variance. Using Eq. (12), we can define the analogous ratio for the ground state signal contribution alone as

$$F_{\rm GS} \equiv \frac{|\langle \tilde{X} \rangle_{\rm GS}|}{\delta \tilde{X}} \quad , \tag{13}$$

which quantifies our ability to resolve virtual radiation pressure effects. We plot [70, 71] these quantities as a function of the thermal occupation of the light-matter system in Fig. 1. Close to the ground state, $F \rightarrow 0$ in the absence of matter (black curve) while $F \rightarrow F_{\rm GS} \neq 0$ when matter is present in the cavity in the ultrastrongcoupling regime (dashed blue curve).

For a more quantitative analysis, we now consider two minimal conditions to observe the influence of virtual radiation pressure on the mechanical displacement, i.e. the conditions

$$|\langle \tilde{X} \rangle_{\rm GS}| > |\langle \tilde{X} \rangle_{\bar{n}}|, \qquad F_{\rm GS} > 1 \ .$$
 (14)

The first condition requires the observed total displacement to be mainly due to ground state effects. The second condition requires the signal to be resolved with respect to the standard-quantum-limit noise [1, 2] (see threshold in Fig. 1).

From the analysis following Eq. (12), the first condition translates to an upper bound $\bar{n}_{\rm GS}$ on the allowed thermal occupation of the light-matter system for the ground-state effects to dominate. Complementarily, the second condition implies the ability to resolve the groundstate contribution to the signal in Eq. (12) with respect to its total uncertainty $\delta \tilde{X}$. It translates into both a lower bound $\bar{\eta}_m^{\rm SQL}$ on the normalized opto-mechanical coupling and another upper bound $\bar{n}^{\rm SQL}$ on the thermal lightmatter occupation. By solving the Heisenberg equation of motion using Eq. (11), we find [68] the following explicit conditions

$$\bar{n} < \bar{n}_{\max}, \qquad \bar{\eta}_m > \bar{\eta}_m^{SQL}$$
 . (15)

This is the second main result of our work, generalizing Eq. (8) to finite temperatures. Here, $\bar{n}_{\rm max} = \min(\bar{n}^{\rm GS}, \bar{n}^{\rm SQL})$ (with $4\bar{n}^{\rm GS} = \eta^2$, $8\bar{n}^{\rm SQL} = \beta\eta^4$ at lowest significant order in η where the expression for $n_{\rm max}$ does not depend on the bosonic or spin nature of the model), and $\bar{\eta}_m^{\rm SQL} = 4[(1+2n_b)/(\eta^4-16R)]^{1/2}$ (with $R = \bar{n}(1+\bar{n})(\alpha_+^2/\beta_+ + \alpha_-^2/\beta_-), \beta_{\pm} = 1 + 2\kappa_{\pm}/\Gamma_m)$.

Consistent with our initial intuitive reasoning, when $n_b, R \to 0$, the second expression in Eq. (15) is equivalent to the zero-temperature result given in Eq. (8). Moreover, we note that mechanical thermal occupation is not amplified by this protocol, and its influence can be understood as a weak renormalization of the opto-mechanical coupling $g_0 \mapsto g_0/(1 + n_b)^{1/2}$.

In summary, one can observe the amplified ground-state occupation when the temperature is low enough such that ground-state effects both dominate the displacement $(\bar{n} < \bar{n}_{\rm GS})$ and can be resolved from thermal and vacuum fluctuations (which requires $\bar{n} < \bar{n}^{\rm SQL}$, and sufficiently large opto-mechanical coupling $\bar{\eta}_m > \bar{\eta}_m^{\rm SQL}$), see Fig. 1.

Experimental feasibility.— Experimentally, optomechanical devices operating at microwave frequencies can achieve both strong electro-mechanical couplings g_0

FIG. 1. (Color online) Total displacement visibility F in the presence (full blue curve, $\eta = 0.1$) and absence (full black curve, $\eta = 0$ of matter in the cavity as a function of the number of thermal light-matter excitations \bar{n} (for an optomechanical coupling $g_0/\Gamma_m = 3\bar{\eta}_0^{\text{SQL}}$, for $\bar{\eta}_0^{\text{SQL}} = 2/\eta^2$. For high values of \bar{n} the two curves asymptotically converge to a parallel behaviour ([68], section III.B). In the absence of matter, when $\bar{n} \to 0$ a zero photon population implies no displacement (black curve). However, in the presence of matter, virtual photons can displace the mechanical oscillator even for $\bar{n} \to 0$ (blue curve). The relative displacement contribution purely due to virtual radiation pressure effects F_{GS} is represented by the blue dashed curve showing that, for $\bar{n} \to 0$, the displacement is mainly due to the dressed structure of the ground state. The grey vertical line represents the theoretical upper bound \bar{n}_{max} . Below this critical value, it is possible to tune g_0/Γ_m to resolve the ground state signal. This is shown in the Inset which magnifies the main plot around $\bar{n} = \bar{n}_{\text{max}}$. The blue curve corresponds to the same color coded ones in the main figure. The dotted purple and dot-dashed red curves are plotted for different values of g_0/Γ_m (16 $\bar{\eta}_0^{\text{SQL}}$ and $2\bar{\eta}_0^{\text{SQL}}$). respectively). For $\bar{n} < \bar{n}_{max}$, it is always possible to find optomechanical couplings which, in principle, allow one to resolve the ground state signal (i.e., $F_{GS} > 1$).

and ultrastrong light-matter interaction $(\eta > 0.1, [13])$. For concreteness, we consider a microwave cavity capacitively coupled to a micro-mechanical membrane [61, 72] whose motion modulates the frequency of the cavity. The consequent opto-mechanical interaction can then be modulated by using an additional tunable capacitor and/or inductance (for example using a SQUID threaded by an external magnetic field [61, 68]). The experimental parameters (explicitly referring to [72]) realized in these systems are very promising, with a thermal occupation of the cavity being $\bar{n}^{exp} \sim 10^{-11}$ and a renormalized opto-mechanical coupling $\bar{\eta}_m^{\exp} \sim 6$. By using the other relevant experimental parameters in [72] we find $\bar{n}_{\rm max} \sim 0.1,$ so that $\bar{n}^{\rm exp} < \bar{n}_{\rm max}$, i.e. the first condition in Eq. (8), can be satisfied by a large margin. In order to fulfill the second constraint in Eq. (8), i.e., $\bar{\eta}_m < \bar{\eta}_m^{exp}$, we find that the normalized Rabi frequency has to be $\eta > 0.8$. This is compatible with the other main requirement for the observation of the effect given in Eq. (8), i.e., $\eta > (\bar{\eta}_m^{\exp}/2)^{1/2} \sim 0.6$. These conditions are, in principle, possible in circuit-QED devices [13].

Conclusions.— We presented a method to probe the structure of the dressed ground state by introducing an opto-mechanical coupling between the cavity mode and a mechanical measurement device. Compared to other proposals [28], our method is effectively QND, exhibits higher sensitivity, and requires only weak optomechanical coupling. Critically, we showed that a timedependent modulation of the opto-mechanical coupling leads to an effective amplification of the measurement strength, allowing one to peer into the dressed ground state. We expect that this technique could also be applied to other measurement problems based on the same opto-mechanical interaction.

Acknowledgments. — We acknowledge helpful feedback and comments from Simone De Liberato, Daniel Herr, Anton F. Kockum, Adam Miranowicz, Jorge Puebla-Nunez, Roberto Stassi, and Jacob Taylor. FN was partially supported by the RIKEN iTHES Project, MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the Japan Society for the Promotion of Science (KAKENHI), the IMPACT program of JST, JSPS-RFBR grant No 17-52-50023, CREST grant No. JPMJCR1676. FN, MC, and NL acknowledge support from the Sir John Templeton Foundation.

- * e-mail:nwlambert@gmail.com
- V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, *Quantum Measurements* (Cambridge University Press, 1992).
- [2] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, *Introduction to quantum* noise, measurement, and amplification, Reviews of Modern Physics 82, 1155 (2010), arXiv:0810.4729.
- [3] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, *Microcavities* (Oxford University Press, 2011).
- [4] S. M. Dutra, *Cavity Quantum Electrodynamics* (Wiley, Hoboken, New Jersey, 2005).
- [5] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, *Observing the progressive decoherence of the "meter" in a quantum measurement*, Phys. Rev. Lett. **77**, 4887 (1996).
- [6] S. Haroche and J.-M. Raimond, *Exploring the Quantum:* Atoms, cavities, and Photons (University Press, 2006).
- [7] Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, Ultrastrong light-matter coupling regime with polariton dots, Phys. Rev. Lett. **105**, 196402 (2010), arXiv:1301.1297.
- [8] A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba, and F. Beltram, *Signatures of the ultrastrong light-matter coupling regime*, Phys. Rev. B 79, 201303 (2009), arXiv:0808.3720.
- [9] G. Scalari, C. Maissen, D. Turčinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh,

W. Wegscheider, M. Beck, and J. Faist, Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial, Science **335**, 1323 (2012), arXiv:1111.2486.

- [10] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, *Circuit quantum electrodynamics in the ultrastrong-coupling regime*, Nature Physics 6, 772 (2010), arXiv:1003.2376.
- [11] P. Forn-Díaz, J. J. García-Rippoll, B. Peropadre, M. A. Yurtalan, J. L. Orgiazzi, B. R., C. M. Wilson, and A. Lupascu, Ultrastrong coupling of a single artificial atom to an electromagnetic continuum, (2016), arXiv:1602.00416.
- [12] Z. Chen, Y. Wang, L. Tiefu, L. Tian, Y. Qiu, K. Inomata, F. Yoshihara, S. Han, F. Nori, J. S. Tsai, and J. Q. You, *Multi-photon sideband transitions in an ultrastronglycoupled circuit quantum electrodynamics system*, (2016), arXiv:1602.01584.
- [13] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, *Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime*, Nature Physics 13, 44 (2017), arXiv:1602.00415.
- [14] A. Stockklauser, V. F. Maisi, J. Basset, K. Cujia, C. Reichl, W. Wegscheider, T. Ihn, A. Wallraff, and K. Ensslin, *Microwave emission from hybridized states in a semiconductor charge qubit*, Phys. Rev. Lett. **115**, 046802 (2015), arXiv:1504.05497.
- [15] P. Forn-Daz, J. J. Garca-Ripoll, B. Peropadre, J.-L. Orgiazzi, M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu, Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime, Nature Physics 13, 39 (2017), arXiv:1602.00416.
- [16] F. Beaudoin, J. M. Gambetta, and A. Blais, *Dissipation and ultrastrong coupling in circuit QED*, Physical Review A 84, 043832 (2011), arXiv:1107.3990.
- [17] L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One photon can simultaneously excite two or more atoms, Phys. Rev. Lett. 117, 043601 (2016), arXiv:1601.0086.
- [18] O. Di Stefano, R. Stassi, L. Garziano, A. F. Kockum, S. Savasta, and F. Nori, *Cutting Feynman loops in ul*trastrong cavity QED: Stimulated emission and reabsorption of virtual particles dressing a physical excitation, arXiv:1603.04984 (2016).
- [19] L. Garziano, R. Stassi, V. Macrì, A. F. Kockum, S. Savasta, and F. Nori, *Multiphoton quantum Rabi oscillations in ultrastrong cavity QED*, Phys. Rev. A **92**, 063830 (2015), arXiv:1509.06102.
- [20] L. Garziano, A. Ridolfo, R. Stassi, O. Di Stefano, and S. Savasta, Switching on and off of ultrastrong lightmatter interaction: Photon statistics of quantum vacuum radiation, Phys. Rev. A 88, 063829 (2013).
- [21] C. Ciuti, G. Bastard, and I. Carusotto, *Quantum vacuum properties of the intersubband cavity polariton field*, Phys. Rev. B **72**, 115303 (2005), arXiv:cond-mat/0504021.
- [22] G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, *Sub-cycle switch-on of ultra*strong lightmatter interaction, Nature **458**, 178 (2009).
- [23] A. Ridolfo, R. Vilardi, O. Di Stefano, S. Portolan, and S. Savasta, All optical switch of vacuum Rabi oscillations: The ultrafast quantum eraser, Phys. Rev. Lett.

106, 013601 (2011), arXiv:1010.0684.

- [24] M. Cirio, S. De Liberato, N. Lambert, and F. Nori, Ground state electroluminescence, Physical Review Letters 116, 113601 (2016), arXiv:1508.05849.
- [25] R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime, Phys. Rev. Lett. **110**, 243601 (2013), arXiv:1210.2367.
- [26] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti, Extracavity quantum vacuum radiation from a single qubit, Phys. Rev. A 80, 053810 (2009), arXiv:0906.2706.
- [27] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, *Colloquium: Stimulating uncertainty: Amplify*ing the quantum vacuum with superconducting circuits, Rev. Mod. Phys. 84, 1 (2012), arXiv:1103.0835.
- [28] J. Lolli, A. Baksic, D. Nagy, V. E. Manucharyan, and C. Ciuti, Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics, Phys. Rev. Lett. 114, 183601 (2015), arXiv:1411.5618.
- [29] S. Felicetti, T. Douce, G. Romero, P. Milman, and E. Solano, Parity-dependent state engineering and tomography in the ultrastrong coupling regime, Scientific Reports 5 (2015), arXiv:1411.7968.
- [30] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, *Cavity optomechanics*, Reviews of Modern Physics 86, 1391 (2014), arXiv:1303.0733.
- [31] W. P. Bowen and G. J. Milburn, *Quantum Optomechan*ics (Taylor & Francis, Boca Raton, Florida, 2015).
- [32] F. Marquardt and S. M. Girvin, Trend: Optomechanics, Physics 2, 40 (2009).
- [33] A. Schliesser and T. Kippenberg, Hybrid atomoptomechanics, Physics 4, 97 (2011).
- [34] H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A 92, 033806 (2015), arXiv:1506.03858.
- [35] P. D. Nation, J. Suh, and M. P. Blencowe, Ultrastrong optomechanics incorporating the dynamical Casimir effect, Phys. Rev. A 93, 022510 (2016), arXiv:1507.00115.
- [36] Y. Chang, H. Ian, and C. Sun, Triple coupling and parameter resonance in quantum optomechanics with a single atom, Journal of Physics B 42, 215502 (2009), arXiv:0810.4206.
- [37] M. J. Akram, M. M. Khan, and F. Saif, *Tunable fast and slow light in a hybrid optomechanical system*, Phys. Rev. A **92**, 023846 (2015), arXiv:1501.06062.
- [38] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013), arXiv:1204.2137.
- [39] V. B. Braginskii, A. B. Manukin, and M. Y. Tikhonov, Investigation of dissipative ponderomotive effects of electromagnetic radiation, Soviet Physics JETP 31, 5 (1970).
- [40] C. K. Law, Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium, Phys. Rev. A 49, 433 (1994).
- [41] J. Restrepo, C. Ciuti, and I. Favero, Single-polariton optomechanics, Phys. Rev. Lett. 112, 013601 (2014), arXiv:1307.4282.
- [42] M. Abdi, M. Pernpeintner, R. Gross, H. Huebl, and M. J. Hartmann, Quantum state engineering with circuit electromechanical three-body interactions, Phys. Rev. Lett. 114, 173602 (2015), arXiv:1502.03787.
- [43] F. Rouxinol, Y. Hao, F. Brito, A. O. Caldeira,

E. K. Irish, and M. D. LaHaye, *Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system*, Nanotechnology **27**, 364003 (2016), arXiv:1605.01454.

- [44] J. Restrepo, I. Favero, and C. Ciuti, Fully coupled hybrid cavity optomechanics: quantum interferences and correlations, (2016), arXiv:1605.08566.
- [45] P. W. Milonni, R. J. Cook, and M. E. Goggin, Radiation pressure from the vacuum: Physical interpretation of the Casimir force, Phys. Rev. A 38, 1621 (1988).
- [46] S. K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 μm range, Phys. Rev. Lett. 78, 5 (1997).
- [47] D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, *Casimir Physics* (Springer, 2011).
- [48] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, *Dynamical Casimir effect in a superconducting coplanar waveguide*, Phys. Rev. Lett. **103**, 147003 (2009), arXiv:0906.3127.
- [49] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, *Dynamical Casimir effect in superconducting microwave circuits*, Phys. Rev. A 82, 052509 (2010), arXiv:1007.1058.
- [50] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Nature 479, 376 (2011), arXiv:1105.4714.
- [51] H.-P. Breuer and F. Petruccione, *The theory of open quantum systems* (Oxford University Press, 2002).
- [52] A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, *Photon blockade in the ultrastrong coupling regime*, Phys. Rev. Lett. **109**, 193602 (2012), arXiv:1206.0944.
- [53] G. Via, G. Kirchmair, and O. Romero-Isart, Strong single-photon coupling in superconducting quantum magnetomechanics, Phys. Rev. Lett. 114, 143602 (2015), arXiv:1412.6074.
- [54] A. J. Rimberg, M. P. Blencowe, A. D. Armour, and P. D. Nation, A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime, New Journal of Physics 16, 055008 (2014), arXiv:1312.7521.
- [55] T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, and M. A. Sillanpää, Enhancing optomechanical coupling via the Josephson effect, Phys. Rev. Lett. **112**, 203603 (2014), arXiv:1311.3802.
- [56] J.-Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116, 163602 (2016), arXiv:1512.07609.
- [57] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. **114**, 093602 (2015), arXiv:1412.2864.
- [58] A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109, 223601 (2012), arXiv:1202.6210.
- [59] A. Xuereb, C. Genes, and A. Dantan, Collectively enhanced optomechanical coupling in periodic arrays of scatterers, Phys. Rev. A 88, 053803 (2013), arXiv:1304.4574.
- [60] M.-A. Lemonde, N. Didier, and A. A. Clerk, Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nature Communications 7, 11338 (2016), arXiv:1509.09238.

- [61] J.-Q. Liao, K. Jacob, F. Nori, and R. W. Simmonds, Modulated electromechanics: large enhancements of nonlinearities, New Journal of Physics 16, 072001 (2014), arXiv:1304.4608.
- [62] B. Royer, A. L. Grimsmo, N. Didier, and A. Blais, Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling, arXiv:1603.04424 (2016).
- [63] A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Dynamical Lamb effect versus dissipation in superconducting quantum circuits, Phys. Rev. A 93, 063845 (2016), arXiv:1603.02040.
- [64] D. S. Shapiro, A. A. Zhukov, W. V. Pogosov, and Y. E. Lozovik, Dynamical Lamb effect in a tunable superconducting qubit-cavity system, Phys. Rev. A 91, 063814 (2015), arXiv:1503.01666.
- [65] A. A. Zhukov, D. S. Shapiro, S. V. Remizov, W. V. Pogosov, and Y. E. Lozovik, Superconducting qubit in a nonstationary transmission line cavity: parametric excitation, periodic pumping, and energy dissipation, (2016), arXiv:1607.03054.
- [66] Intuitively, the mechanical displacement induced by the (Fourier transformed) radiation pressure force $P_n(\omega)$ can be written as $\Delta x = \int_{-\infty}^{\infty} d\omega \ e^{i\omega t} \chi(\omega) P_n(\omega)$ in terms of the mechanical susceptibility $\chi(\omega) = \omega_m/(\omega_m^2 - \omega^2 - i\omega\Gamma_m)$. For constant opto-mechanical couplings we have $P_n \propto \delta(0)$. By modulating the coupling g_0 at the mechanical frequency, the radiation pressure effectively becomes a driving force with $P_n \propto [\delta(\omega - \omega_m) + \delta(\omega + \omega_m)]/2$. By inserting these expression in the one for Δx , we then find (in a rotating frame) the enhancement factor reported in the main text.
- [67] H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag Berlin Heidelberg, 1999).
- [68] See the online Supplementary Material, which includes Refs. [73–81].
- [69] A constant displacement due to zero-point energy contributions has been subtracted from the quadrature average. Importantly, the variances do not depend on such contributions [68] (section III) and they play no role in the following analysis.
- [70] J. R. Johansson, P. D. Nation, and F. Nori, *Qutip:* An open-source python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012), arXiv:1110.0573.
- [71] J. R. Johansson, P. D. Nation, and F. Nori, *Qutip 2: A python framework for the dynamics of open quantum systems*, Computer Physics Communications 184, 1234 (2013), arXiv:1211.6518.
- [72] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011), arXiv:1103.2144.
- [73] M. Leskes, P. K. Madhu, and S. Vega, Floquet theory in solid-state nuclear magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy 57, 345 (2010).
- [74] I. Scholz, B. H. Meier, and M. Ernst, Operator-based triple-mode Floquet theory in solid-state NMR, The Journal of Chemical Physics 127, 204504 (2007).
- [75] M. Bukov, L. D'Alessio, and A. Polkovnikov, Universal high-frequency behavior of periodically driven systems:

from dynamical stabilization to Floquet engineering, Advances in Physics **64**, 139 (2015).

- [76] A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New Journal of Physics 17, 093039 (2015), arXiv:1502.06477.
- [77] A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion, and D. Esteve, *Tunable resonators for quantum circuits*, Journal of Low Temperature Physics 151, 1034 (2008).
- [78] T. Vaha-Heikkila, J. Varis, J. Tuovinen, and G. M. Rebeiz, in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Vol. 2 (2004) pp. 729–732 Vol.2.
- [79] R. L. Borwick, P. A. Stupar, J. DeNatale, R. Anderson, C. Tsai, K. Garrett, and R. Erlandson, A high Q, large tuning range MEMS capacitor for RF filter systems, Sensors and Actuators A: Physical 103, 33 (2003).
- [80] https://www.johansontechnology.com/lasertrim-rftuning (2017).
- [81] D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall Inc., 1995).