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The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals
with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty
relation, we derive a general condition for achieving such a fundamental limit. When applied to classical dis-
placement measurements with a test mass, this condition leads to an explicit connection between the QCRB
and the Standard Quantum Limit which arises from a tradeoff between the measurement imprecision and quan-
tum backaction; the QCRB can be viewed as an outcome of a quantum non-demolition measurement with the
backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement
sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity
of a broad class of sensors. We illustrate these points with laser interferometric gravitational wave detectors.

Introduction.— In high-precision measurements of classi-
cal signals, one challenge is to reduce various noise sources
so that we can measure the tiny change in the detector state
caused by the signal. This is often achieved by minimiz-
ing the coupling of the detector to the environment. Even-
tually, we approach the quantum regime with the dominant
noise coming from the statistical nature of the detector quan-
tum state. Maximizing the quantum-limited sensitivity re-
quires proper preparation of the detector state and measure-
ments of its observables—a key task in quantum metrology
(cf. the review article by Giovannetti et al. [1]). The quantum
Cramér-Rao bound (QCRB), derived in the pioneering works
of Helstrom [2] and Holevo [3], sets a fundamental limit to the
maximum sensitivity for a given detector state. As proved by
Braunstein et al. [4, 5], this lower bound can be attained only
if (i) the detector state is pure and the right observable is mea-
sured, so that the quantum Fisher information becomes equal
to its classical counterpart, and (ii) the estimator based upon
the measurement records is efficient, i.e., the mean squared
estimation error saturates the classical Cramér-Rao bound.

In linear measurements, as illustrated in Fig. 1, the detector
input port observable, F̂, is linearly coupled to the signal, x.
In the case of single-shot detection of a single-parameter sig-
nal, this is modelled by the interaction Ĥint = − F̂ x δ(t), and
the QCRB for the estimation error, σxx, is (cf., Chapter 2 of
Ref. [6])

σQCRB
xx =

~2

4〈ψ|F̂2|ψ〉
, (1)

where |ψ〉 is the initial detector state, and we assume that
〈ψ|F̂|ψ〉 = 0. To attain it, the output-port observable, Ẑ, that
we measure needs to satisfy [4],

Re[〈ψ|Π̂z F̂|ψ〉] = 0 ∀z , (2)

where Re[·] means taking the real part, and the projection op-
erator Π̂z is defined as Π̂z ≡ |z〉〈z| with |z〉 being an eigen-
state of Ẑ and z the measurement outcome. The maximum-
likelihood estimator of x, based upon z, will be efficient if |ψ〉
is Gaussian, or the sample size is large [7].

For detecting signals with multi-dimensional parameters,
the QCRB is not as simple [8] as the one shown in Eq. (1).
In particular, Tsang et al. [9] generalized the QCRB to the lin-
ear measurement of a continuous signal x(t) with an infinite-
dimensional parameter space (specifically gravitational wave
detection using laser interferometers [10, 11]). For time-
invariant, linear detectors with Ĥint = −F̂ x(t), they showed
that the QCRB for estimating the Fourier components, x(ω),
of the signal is

σQCRB
xx (ω) =

~2

4S̄ FF(ω)
, (3)

where S̄ FF is the symmetrized power spectral density that de-
scribes the quantum fluctuations (uncertainty) of F̂. Bragin-
sky et al. [12] also derived a similar result, in terms of the
signal-to-noise ratio.

Until now, it has not been shown generally how the QCRB
in Eq. (3) can be achieved. This is, however, crucial for apply-
ing the QCRB to guide the design of quantum-limited linear
sensors. We fill this gap by showing general conditions for
achieving the bound: (1) the detector is at the quantum limit
with minimum uncertainty, and (2) the observables Ẑ and F̂
are uncorrelated (in terms of cross-spectrum):

S̄ ZF(ω) = 0 . (4)

One can find the optimal Ẑ satisfying the second condition if
the imaginary part of the input susceptibility χFF vanishes:

Im[χFF(ω)] = 0 . (5)
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FIG. 1. (color online) A schematic for a quantum measurement of a
classical signal using a linear detector. One degree of freedom of the
detector is singled out as the input port, for which the observable, F̂,
is coupled to the signal, x, and another one as the output port with its
observable, Ẑ, projectively measured by the observer. The detector
is a quantum interface between two classical domains.
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When this is not the case and we only have the first condition
satisfied, the minimal estimation error will still be bounded:

σQCRB
xx ≤ minσxx ≤ 2σQCRB

xx . (6)

In deriving the above results, we use the linear-response the-
ory developed by Kubo [13], which has previously been ap-
plied to analyze the quantum limited sensitivity of linear de-
tectors [14–17]. Additionally, we apply the recent result on
the Heisenberg uncertainty relation for continuous quantum
measurements presented in Ref. [18].

Single-shot Measurements.— Before discussing the contin-
uous measurements, we will first illustrate the basic formal-
ism using the example of a single-shot measurement with
Ĥint = −F̂ x δ(t). Such an interaction will leave F̂ unchanged,
but induce a shift on any observable that does not commute
with F̂. Specifically, the solution to Ẑ reads

Ẑ = Ẑ(0) + (i/~)[Ẑ(0), F̂(0)] x (7)

where the superscript (0) denotes evolution under the detector
free Hamiltonian Ĥdet. For linear detectors, the canonical co-
ordinates have classical-number (i.e., not operator) commuta-
tors, and Ĥdet only contains their linear or quadratic functions.
The relevant observables, Ẑ and F̂, also depend linearly on
the canonical coordinates. This justifies application of linear-
response theory, in which different quantities are linked by
classical-number susceptibilities. A brief introduction to the
linear-response theory is in the supplemental material.

In this example, we introduce the following susceptibility:

χZF ≡ (i/~)[Ẑ(0), F̂(0)] , (8)

which quantifies response of the detector output to the signal:
Ẑ = Ẑ(0) + χZF x. Given the projective measurement of Ẑ, we
can construct an unbiased estimator of the signal:

x̂est = Ẑ/χZF . (9)

The resulting mean squared error σxx is determined by the
quantum uncertainty of Ẑ(0), i.e.,

σxx ≡ Tr[ρ̂det(x̂est − x)2] = σZZ/χ
2
ZF , (10)

where σZZ ≡ Tr[ρ̂det(Ẑ(0))2] assuming zero mean and ρ̂det is
the density matrix of the detector initial state. From the gen-
eral Heisenberg uncertainty relation between Ẑ(0) and F̂(0):

σZZσFF − σ
2
ZF ≥ (~2/4)χ2

ZF (11)

with σZF ≡ Tr[ρ̂det(Ẑ(0)F̂(0) + F̂(0)Ẑ(0))/2] being their cross
correlation, we obtain

σxx ≥
~2

4σFF
+

σ2
ZF

σFFχ
2
ZF

≥
~2

4σFF
= σQCRB

xx . (12)

Achieving the QCRB therefore requires that the detector is at
quantum limit with minimum uncertainty, i.e., in a pure Gaus-
sian state with Eq. (11) taking the equal sign, and additionally

σZF = 0 . (13)
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FIG. 2. (color online) Illustration of the single-shot measurement
with the detector in a pure, Gaussian, squeezed state (the noise el-
lipse represents its Wigner function). The optimal observable Ẑ
to achieve the QCRB is neither the conjugate variable of F̂ (along
the horizontal axis), which contains the largest signal, nor the one
having the minimum noise (parallel to the semi-minor axis of the
noise ellipse). Instead it is the one uncorrelated with F̂ and tan θ =

sin(2φ) sinh(2r)/[cosh(2r) + cos(2φ) sinh(2r)], in which r and φ are
the squeezing factor and angle, as derived in Ref. [5] using Eq. (2).

Since Ẑ =
∫

dz Π̂z z, this condition is equivalent to Eq. (2).
When discussing a similar example, Braunstein et al. [5] de-
rived the optimal Ẑ using Eq. (2), as illustrated in Fig. 2.

Continuous Measurements.— The discussion for the con-
tinuous measurements is quite similar to the single-shot case,
but with additional complications due to the involvement of
many degrees of freedom—the detector is a continuum field.
We focus on linear detectors that are time-invariant, i.e., hav-
ing a time-independent Ĥdet and being in a stationary state
[ρ̂det, Ĥdet] = 0, allowing for frequency-domain analysis of
both dynamics and noise.

As in Eq. (7), Ẑ in the continuous case is given by

Ẑ(t) = Ẑ(0)(t) +

∫ ∞

−∞

dt′χZF(t − t′) x(t′) (14)

with the susceptibility, χZF ≡ (i/~)[Ẑ(0)(t), F̂(0)(t′)]Θ(t − t′), a
function of the time difference t− t′. In the frequency domain,
it becomes

Ẑ(ω) = Ẑ(0)(ω) + χZF(ω)x(ω) , (15)

where f (ω) ≡
∫ +∞

−∞
dt eiωt f (t). The unbiased estimator of

x(ω), following Eq. (9), is then x̂est(ω) = Ẑ(ω)/χZF(ω).
Given that the detector is in a stationary state, the quan-

tum fluctuation can be quantified by using the spectral den-
sity. There is also a Heisenberg uncertainty relation for the
continuous measurements in terms of spectral densities and
susceptibilities (cf., Chapter VI in Ref. [16] or Ref. [18]):

S̄ ZZ(ω)S̄ FF(ω) − |S̄ ZF(ω)|2 ≥
~2

4
|χZF(ω)|2+

~
∣∣∣Im[S̄ ZZ(ω) χFF(ω) − S̄ ∗ZF(ω)χZF(ω)]

∣∣∣ . (16)

Here the symmetrized spectral densities S̄ ZZ , S̄ FF and S̄ ZF

are defined as S̄ AB(ω) ≡ [S AB(ω) + S BA(−ω)]/2 with the un-
symmetrized one S AB defined by Tr[ρ̂det Â(0)(ω)B̂(0)†(ω′)] ≡
2π S AB(ω)δ(ω − ω′) [17]; χFF is defined in the same way as
χZF in Eq. (14) and with Ẑ(0) replaced by F̂(0).
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With Eq. (16), the error σxx(ω) ≡ S̄ ZZ(ω)/|χZF(ω)|2 for es-
timating x(ω) thus satisfies

σxx(ω) ≥
~2

4S̄ FF
+
|S̄ ZF |

2 + ~|Im[S̄ ZZ χFF − S̄ ∗ZFχZF]|

S̄ FF |χZF |
2

. (17)

As proven in Ref. [18], when the detector is at the quantum
limit, i.e., in a pure, stationary, Gaussian state—the multi-
mode squeezed state [19], not only does Eq. (16) become an
equality, but also we have

Im[S̄ ZZ(ω) χFF(ω) − S̄ ∗ZF(ω)χZF(ω)]|quantum limit = 0 . (18)

At this point, we only require Eq. (4) to attain the QCRB—the
first term in Eq. (17).

We now show that if Eq. (5) is satisfied, the optimal observ-
able Ẑ, which realizes Eq. (4), exists. In general, Ẑ is a linear
combination of two conjugate variables (denoted by Ẑ1,2) of
the output port, up to some constant:

Ẑ(ω) = Ẑ1(ω) sin θ + Ẑ2(ω) cos θ . (19)

Eq. (4) can then be realized if there is a real solution to θ:

tan θ = −S̄ Z2F(ω)/S̄ Z1F(ω) ∈ Reals, (20)

or Im[S̄ Z1F(ω)S̄ ∗Z2F(ω)] = 0. This turns out to be equivalent to
Im[χFF(ω)] = 0 due to the following equality:

Im[S̄ Z1F(ω)S̄ ∗Z2F(ω)] = (~/4)Im[χFF(ω)] , (21)

which is generally valid for detectors at the quantum limit.
If Im[χFF] is nonzero, we will not find the optimal Ẑ that

exactly achieves the QCRB. Nevertheless, the estimation error
σxx, minimized over all possible θ in Eq. (19), is still bounded
as shown in Eq. (6). This is because

min
θ

∣∣∣S̄ ZF(ω)/χZF(ω)
∣∣∣ ≤ ~/2 . (22)

Including Eq. (17), the above inequality implies Eq. (6). The
detailed proofs for Eqs. (21) and (22) are provided in the sup-
plemental material [20].

Classical Displacement Measurements.— The above dis-
cussion applies to general linear measurements. Here we
specifically look measurements of displacement; the detector
often consists of a quantum field and a test mass with its po-
sition being displaced by a classical signal, which can be a
result of the action of a force signal. The interaction between
the field and the test mass leads to an important sensitivity
limit—the Standard Quantum Limit (SQL), first derived by
Braginsky [16]. Below we show an explicit connection be-
tween the SQL and the QCRB, and also discuss the active
role of the test mass in enhancing the detector sensitivity.

In terms of a mathematical description, we denote the input
port observable of the field as F̂ and the output as Ẑ, to dis-
tinguish from F̂ and Ẑ (relevant for the entire detector); F̂ is
coupled to the test mass position q̂ via the interaction −q̂ F̂ ,

and Ẑ is projectively measured. Solving the detector dynam-
ics leads to (in the frequency domain):

F̂(0) =
F̂ (0)

1 − χqqχFF
, Ẑ(0) = Ẑ(0) +

χZF χqqF̂
(0)

1 − χqqχFF
. (23)

In the literature, the first term Ẑ(0) of the detector output ob-
servable Ẑ(0) is referred to as the imprecision noise; the second
term, proportional to F̂ (0), is the quantum backaction noise.

For the special case when the input susceptibility of the
field is zero: χFF = 0, the resulting estimation error is

σxx =
S̄ZZ
|χZF |2

+ 2Re
[
χ∗qq

S̄ZF
χZF

]
+ |χqq|

2S̄ FF . (24)

If the imprecision noise and the backaction noise are uncorre-
lated, i.e. S̄ZF = 0, its lower bound will be the SQL:

σxx =
S̄ZZ
|χZF |2

+ |χqq|
2S̄ FF ≥ ~|χqq| ≡ σ

SQL
xx . (25)

The SQL can be surpassed by using quantum non-demolition
(QND) measurements [21]: e.g., coherent noise cancellation
schemes [22] or equivalently, optimal readout schemes [23]
which cancel the backaction noise. In particular, optimal read-
out schemes utilize quantum correlations S̄ZF , and can be
understood by applying the uncertainty relation S̄ZZS̄ FF ≥
|S̄ZF |2 + ~2|χZF |

2/4 to rewrite Eq. (24) as

σxx ≥
~2

4S̄ FF
+

∣∣∣∣∣∣ S̄ZFχZF
+ χqqS̄ FF

∣∣∣∣∣∣2 ≥ ~2

4S̄ FF
. (26)

The ultimate bound will be the QCRB if we read out the op-
timal output observable satisfying S̄ZF /χZF + χqqS̄ FF = 0,
which, from Eq. (23), is equivalent to Eq. (4) shown earlier.
The SQL can therefore be viewed as arising from a subopti-
mal readout scheme.

In cases where χFF is not zero, one can similarly show that
the estimation error is again bounded by the QCRB:

σxx ≥
~2

4S̄ FF
=
~2

4S̄ FF
|1 − χqqχFF |

2 . (27)

In contrast to Eq. (26), here we have a factor of |1− χqqχFF |
2,

which can be smaller than unity. There are two equivalent
interpretations: (1) the test mass response is modified by the
quantum field:

χeff
qq =

χqq

1 − χqqχFF
; (28)

and (2) the quantum fluctuations of the field are modified by
the test mass, as manifested by the relation between F̂(0) and
F̂ (0) in Eq. (23). The latter highlights the active (and enhanc-
ing) role of the test mass, rather than being a victim of the
quantum backaction. Below, we illustrate this using gravita-
tional wave (GW) detection with laser interferometers as an
example.
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FIG. 3. (color online) Schematic diagram of a LIGO-like interfer-
ometer (left). Two approximately equivalent physical pictures for
the detection principle (right).

Gravitational-wave Detection.— A typical GW detector,
such as LIGO [24], is shown schematically in Fig. 3. This
is an interferometer with Fabry-Pérot arm cavities formed by
suspended mirrors (test masses). The usual picture of the de-
tection principle envisions the GW as a tidal force on the test
masses, and the resulting differential motion being probed by
the optical field. Another picture is to view the GW as a strain
directly coupled to the optical field [25, 26]. The latter is
more appropriate when the GW wavelength is comparable to
or shorter than the interferometer arm length, otherwise it is
approximately equivalent to the former. We will apply it in
later discussions to highlight the active role of the test mass
mentioned earlier.

Putting the GW detection under the general framework, the
classical signal is

x = LarmhGW , (29)

where Larm is the arm length, and hGW is the GW strain. The
test mass motion that we care about is the differential mode of
the four mirrors in the two arms, with the susceptibility:

χqq = −4/(Mω2) , (30)

where M is the mirror mass. The quantum field is the optical
field, coupled to the test mass via the radiation pressure.

As shown in Refs. [27, 28], the entire interferometer can be
mapped to a single-cavity-mode optomechanical device, de-
scribed by the standard cavity optomechanics [29]. The input
observable F̂ is the time-varying part of the radiation pres-
sure, which is proportional to the amplitude quadrature X̂ of
the cavity mode:

F̂ = 2Pcav/c = ~gX̂ , (31)

of which the relevant susceptibility is given by [27]:

χFF =
~g2∆

(ω − ∆ + iγ)(ω + ∆ + iγ)
. (32)

Here g ≡ 2
√

P̄cavωcav/(~Larmc) with P̄cav the average opti-
cal power inside the cavity and ωcav the cavity resonant fre-
quency; ∆ = ω0 − ωcav is the detuning of the laser frequency
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FIG. 4. (color online) The top row shows the QCRB (solid curve) for
LIGO-type GW detector with detuning frequency ∆ = 0 (left) and
∆/(2π) = 400 Hz (right), and various sensitivity curves for compar-
ison: (i) dash curve—constant phase quadrature readout, (ii) dash-
dot curve—readout quadrature optimized to maximize sensitivity at
each frequency, and (iii) dot curve—the SQL

√
4~/(Mω2). The bot-

tom row shows the ratio to the QCRB for selected curves. Other
relevant parameters are: M = 40 kg, Pcav = 800 kW, Larm = 4 km,
γ/(2π) ≈ 100 Hz, and laser frequency ω0/(2π) ≈ 3 × 1014 Hz.

ω0; γ is the cavity bandwidth. The output observable Ẑ is a
linear combination of the amplitude and phase quadrature of
the outgoing field at the dark (differential) port.

In Fig. 4, we plot the resulting QCRB for the two cases: ∆ =

0 (tuned) and ∆ , 0 (detuned), assuming other parameters
similar to LIGO. In comparison, we have also included the
SQL, and the estimation error σ1/2

xx , i.e. the sensitivity, for the
phase quadrature readout and the optimal readout. The tuned
case having χFF = 0 provides a concrete example of Eq. (25)
and Eq. (26). Indeed, the optimal readout, which surpasses the
SQL by canceling the backaction noise, leads to a sensitivity
exactly equal to the QCRB.

In the detuned case with χFF , 0, the first point we want to
highlight is that the maximum difference between the optimal-
readout sensitivity, considered by Harms et al. [30], and the
QCRB is at most

√
2 in amplitude, in accordance with our

general result Eq. (6). The second point is that there are two
noticeable dips in the QCRB. They imply that the amplitude
quadrature of the cavity mode has higher fluctuations around
these dips than other frequencies. Both can be interpreted as
arising from positive feedback induced optical resonance. The
higher frequency one coincides with the detuning frequency,
which is at the cavity resonance. The low frequency one pro-
vides an example of the extra factor |1− χqqχFF |

2 in Eq. (27).
Physically, this has to do with the ponderomotive squeez-
ing (or amplification) effect [23, 31], which recently has been
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demonstrated experimentally [32–34]. The test mass acts as a
Kerr-type nonlinear medium converting the amplitude fluctu-
ations into the phase fluctuations, which in turn, feeds back to
the amplitude quadrature due to the cavity detuning. Since the
test mass susceptibility goes as 1/ω2, cf. Eq. (30), the feed-
back gain is frequency dependent, resulting in the sharp reso-
nance feature. The underlying physics is similar to the intra-
cavity squeezing studied theoretically by Peano et al. [35] and
experimentally by Korobko et al. [36].

An equivalent interpretation of the low frequency dip was
presented in Refs. [27, 37]. It was attributed to the so-called
optical spring effect, an example of Eq. (28)—the optome-
chanical interaction changes the test mass dynamics by cre-
ating a new mechanical resonance, around which the response
to GWs is enhanced. The previous optical feedback interpre-
tation, however, removes the distinction between optics and
mechanics—the role of the latter also modifies the quantum
fluctuations of the optical field. This suggests a new approach
to designing optomechanical sensors. We can add proper op-
tical filters in the feedback loop, together with the internal
ponderomotive squeezing, to shape the optical feedback gain,
so that the quantum fluctuation of the field is enhanced in the
frequency band of interest. Since the sensitivity using the opti-
mal readout is bounded, cf. Eq. (6), this will result in high de-
tector sensitivity at relevant frequencies, with limitations only
coming from the losses. Incorporating the effect of losses is
critical and the subject of future work.
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