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We propose a method for increasing purity of interacting quantum systems that takes advantage
of correlations present due to the internal interaction. In particular when this interaction is suffi-
ciently strong, we show that by using the system’s quantum correlations one can achieve cooling
beyond established limits of previous conventional algorithmic cooling proposals which assume no
interaction.

Introduction.– The field of quantum information has
inspired new methods for cooling physical systems at
the quantum scale [1–7]. Vice versa, these algorith-
mic cooling methods have been shown to be useful for
the purification of qubits. In particular, heat-bath al-
gorithmic cooling (HBAC) methods operate by iterat-
ing suitable redistributions of entropy and contact with
a bath [1, 3, 8–10]. An assumption underlying current
HBAC methods is that the qubits are not interacting or
correlated [3–5, 11–14]. In practice, however, the qubits
generally possess correlations of both classical and quan-
tum origin, generated thermally and through interaction-
induced entanglement respectively. Here, we generalize
HBAC to allow the presence of correlations – and we
show that these correlations provide a resource that can
be used to improve the efficiency of HBAC methods be-
yond previously established limits.

Indeed, recent work has suggested that quantum cor-
relations are important in work extraction and entropy
flows in cooling protocols [15–20]. However, current algo-
rithms such as PPA (Partner Pairing Algorithm [4, 9]) do
not make use of correlations in the system. What is more,
PPA-like algorithms include steps (rethermalization with
the environment for reseting qubits) that break quantum
and classical correlations in the system.

Here, we improve over existing methods by instead us-
ing these pre-existing correlations to remove energy and
therefore heat through so-called Quantum Energy Tele-
portation (QET) [15, 21–29]. QET allows the transmis-
sion of energy between a sender, A, and a receiver, B,
without energy directly propagating from A to B. In-
stead, QET utilizes pre-existing quantum and classical
correlations in an interacting system, together with clas-
sical (or quantum [28]) communication between A and B:
First, energy is spent to measure A (classically or quan-
tumly) and the outcome is transmitted to B. Because of
the correlations, this information allows B to some extent
to predict an upcoming fluctuation at his location and to
extract work from it, thereby overcoming the strong local
passivity of Gibbs states [15].

Our aim now is to show that by combining QET meth-

ods with HBAC techniques, the purity of subsystems can
be improved beyond the results of previously devised al-
gorithmic cooling protocols [1, 2, 30, 31] using the same
amount of, or less, resources, which can be useful for ex-
perimental quantum information processing, as we will
discuss below.
Summary of Minimal QET [28] with POVMs.— Con-

sider the system of two interacting qubits, A and B

H = HA +HB + V, (1)

where Hν = hσνz + f(h, k)11, with ν = {A,B} and

V = 2

[
kσa

xσ
b
x +

k2

h2
f(h, k)11

]
. (2)

Here, h and k are positive constants and the function
f(h, k) = h2/

√
h2 + k2 is chosen such that the ground

state of the full Hamiltonian has vanishing energy. Since
the interaction Hamiltonian does not commute with the
qubit’s free Hamiltonian, the ground state of the system
is not separable. Concretely, the system’s ground state
|g〉 in terms of eigenstates of σa

z , σ
b
z reads

|g〉 = (F−|1〉a|1〉b − F+|0〉a|0〉b)/
√

2, (3)

where F± =
√

1± f(h, k)/h, σνz |0〉ν = −|0〉ν , σνz |1〉ν =
|1〉ν , with ν = {A,B}.

In the first step of the basic QET protocol, Alice carries
out a POVM measurement on A and in the second step
she sends the result (µ = ±1) to Bob through a classi-
cal channel. She can be assumed to send the information
faster than the coupling timescale 1/k, which means that
the non-local dynamics can be assumed frozen during
that time. In the third step, depending on the message,
µ, he received, Bob carries out a local unitary operation,
UB (µ). As proved in [28], Bob extracts, on average, en-
ergy from the system by acting locally on B without any
energy propagating from A to B. In this way, POVM-
based QET uses the communication of non-local correla-
tions to circumvent the constraints of strong local passiv-
ity [15] so that energy can be extracted locally. Here, our
aim will be to use QET not primarily to extract energy
but to purify a system.
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QET-Cooling of the ground state with classical com-
munication (QET-2 protocol).– Following the basic QET
protocol, using the unitary UB (µ) that optimizes Bob’s
energy extraction we now show that it is possible to pu-
rify the subsystem B. Let us call this protocol QET-2,
since it is using two-qubits. By applying the three steps
of the protocol (POVM on A, classical communication A
to B, and local unitary in B), the ground state, eq.(3), of
system AB will evolve on average to

ρf =
∑
µ=±1

Ub(µ)Ma(µ)|ψ0〉〈ψ0|M†a(µ)U†b (µ), (4)

where Ma (µ) = eiδµ
(
mµ + eiαµ lµσ

x
a

)
is the measure-

ment operator that describes the POVM on σxa , and µ
is the outcome (that can take either value +1 or −1).
Here, the coefficients mµ, lµ, αµ and δµ are real constants
satisfying

∑
µ (m2

µ + l2µ) = 1, and
∑
µmµlµ cosαµ = 0.

UB (µ) is the unitary that maximizes Bob’s energy ex-
traction:

UB(µ) = cos Ωµ 11 + i sin Ωµ σ
B
y , (5)

Here, Ωµ are a real constants that satisfy

cos(2Ωµ) =

(
h2 + 2k2

)
pa (µ)√

(h2 + 2k2)2pa (µ)
2

+ h2k2qa (µ)
2
, (6)

sin(2Ωµ) = − hkqa (µ)√
(h2 + 2k2)2pa (µ)

2
+ h2k2qa (µ)

2
, (7)

with pa(µ) = m2
µ + l2µ and qa(µ) = 2lµmµ cosαµ.

Let us show that the purity on B is boosted while con-
suming the correlations. From (3), we can calculate the
initial purity of B (defined as Pb

i = Tr
(
ρ2b
)

and the initial
polarization εbi = Tr (σzρb) (for ease of comparison with
prior literature):

Pb
i =

2h2 + k2

2 (h2 + k2)
, and εbi =

h√
h2 + k2

. (8)

In the basis that diagonalizes the state of B, the polar-
ization is related to the purity by εbi =

√
2Pb

i − 1.
After applying the QET-2 protocol, the purity of B is

Pb
f =

2

(h2 + k2)

(
h2

2
+
k2

4
−hkl1m1 sin [2(Ω0 − Ω1)]

+
[
4k2l21m

2
1 + h2

(
l21 +m2

1 − 1
)(
l21 +m2

1

)]
sin2 (Ω0 − Ω1)

)
and the final polarization is

εbf =
1√

h2 + k2
(−h cos 2Ω0 + 2kl1m1(sin 2Ω0 − sin 2Ω1)

+ h
(
l21 +m2

1

)
(cos 2Ω0 − cos 2Ω1)). (9)

For simplicity, we assumed αµ = 0. From this we can
see enhancement of the purification in the cases where
the energy yield of QET is positive.

QET-2 cooling in Gibbs states.– We now show that one
can obtain purification enhancement not only for systems
in the ground state. In particular, let us focus now on
Gibbs states. Consider the two-qubit system whose in-
teraction is described by the Hamiltonian (1), in a Gibbs
state of inverse temperature β. The density matrix that
describes this state is ρβ = e−βH/tr

(
e−βH

)
. In Fig.1a

we present the initial purity, and final purity after apply-
ing the QET-2 protocol as a function of β for different
ratios k/h. In the lower part of the figure we also plot the
initial purity. The stronger the coupling, the lower the
initial purity and the better the amount of purification
that the QET method yields.

The POVM that optimizes the purification of B shown
in Fig. 1a corresponds to the case where the measurement
of A is projective. Remarkably, however, a projection-
valued measurement of A is not necessary for high yield
purification. We see in Fig.1b that for the case of non-
projective measurements, one still obtains an improve-
ment in purity above prior algorithmic cooling meth-
ods applied to the same system. For the non-projective
case plotted in Fig.1b, the optimization was limited to
POVMs whose measurement operators were at least at a
distance of 1/2 in the Frobenius norm from those of the
case of projective measurements.

We have compared our results with two other HBAC
methods: the PPA-HBAC [9] for two qubits and three
qubits (let us call it PPA-2 and PPA-3 respectively) and
a new cooling algorithm [32], SRΓn-HBAC, based on the
Nuclear Overhauser Effect (NOE) (which improves over
PPA-HBAC).

More concretely, PPA-n (PPA-HBAC with n qubits)
consists of the iteration of two steps: entropy compres-
sion, and reset steps to pump entropy out of the system
into the heat-bath [9]. In this protocol, it is assumed that
the total Hamiltonian is unknown, thus it does not take
into account the correlations of the system. In particular,
it is assumed that the reset of qubits is obtained through
a re-thermalization with the bath equivalent to swap-
ping the reset qubits with qubits from the bath (break-
ing quantum and classical correlations in the system),
and the entropy compression makes a descending sort
of the diagonal elements of the density matrix. For the
two-qubit case, PPA-2 cannot perform better than plain
rethermalization with the environment after breakdown
of any system correlations. Namely, we have the target
qubit to be cooled–qubit B–, and a reset qubit–qubit A–.
The first step of PPA-2 will refresh the qubit A, destroy-
ing the correlations with qubit B. Then, the purity of A
is ‘swapped’ to the same purity of the bath, which con-
sists of identical qubits of the same energy gap of A. The
next step is an entropy compression operation which in
this case consists of a swap between qubits A and B. Fi-
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nally, in the next reset step, both qubits will possess the
same purity of the qubits of the bath, no correlations,
and achieving a fixed point of that method. Of course,
PPA-2 in this case becomes simple rethermalization of
both qubits. The algorithm will be, however, non-trivial
in the case of PPA-n with n > 2 as we will discuss in
further sections where we compare PPA-3 with QET-2.

Concerning resources, the differences between QET-2
and PPA-n can be summarized as follows: PPA-n uti-
lizes non-local n-qubit unitaries to make entropy com-
pression, and the ability to map some of the qubits to an
uncorrelated thermal state (modeling re-thermalization
with the bath) breaking all correlations in the system.
It also assumes that we can repeat the application of
the non-local unitary and the reset indefinitely until a
fixed point is reached. On the other hand, QET-2 uti-
lizes LOCC: local generalized measurements (POVMs)
and local (single-qubit) unitaries without refreshing with
a bath. However, we will lift the need for POVMs and
classical communication in the next section when we con-
struct the fully unitary version of the protocol that we
will call QET-2A.

The second method that we compare to QET-2 in
Fig. 1b is called SRΓ2-HBAC [32]. In this method, the
coupling to the environment is not limited to just re-
thermalization, but could also include correlations be-
tween the qubits of the system and the bath. This kind of
correlations allows to make more efficient “state resets”.
Concretely, inspired by the Nuclear Overhauser Effect
[33], one can use that the state tends to thermalize faster
in particular directions in the state space. This proto-
col assumes that thermalization happened much faster
in the subspace spanned by the states |00〉 and |11〉, the
contact with the bath is slow enough so as to rethermal-
ize in this subspace, but fast enough to leave the rest of
the components unchanged. For the two-qubit case, the
first step is to flip the qubit A, then in the second step
a “state reset” |00〉 ↔ |11〉 is applied. These two steps
should be iterated until a fixed point is reached. We show
in Fig. 1b that QET-2 also improves over SRΓ2-HBAC.
Let us recall that SRΓ2-HBAC takes advantage of corre-
lations between the bath and the qubits, whereas QET-2
does not use a thermal bath as a resource and instead
utilizes the correlations which are present in the system
due to its interaction Hamiltonian.

Fully unitary QET cooling.– We will now use the fact
that QET does not need to involve measurements and
can be made fully unitary instead. The role of the mea-
surement device is then played by an ancillary quantum
system C. In the fist step, Alice applies a joint unitary
Ua = exp(iHa

probe) on qubit A and the ancilla, which

is generated by a Hamiltonian Ha
probe =

∑
i,j σ

a
i J ijσan

j

(where J ij is Hermitian) that couples observables of the
ancilla to observables of the detector. Through this inter-
action, the ancilla gains information about Alice’s qubit.
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FIG. 1. (Left) Final purity as a function of β = kb/T , ob-
tained by simulation for k/h ∈ {10, 2, 1}. Note that the
method yields a larger enhancement when increasing the cou-
pling strength. (Centre) Comparison of the final purity as a
function of β, for the methods of QET with projective and
non projective measurements, the SRΓ2-HBAC, and the PPA-
HBAC, and the initial purity. Here k/h = 5, for the two-qubit
system with Hamiltonian of eq.(1). (Right) circuit summariz-
ing the QET-2 protocol.

Instead of classical communications, the ancilla itself is
then sent to Bob. Finally, Bob implements a joint unitary
Ub = exp(iHb

probe) on B and the ancilla, corresponding

to the interaction Hb
probe =

∑
i,j σ

b
iKijσan

j (where Kij
is another Hermitian coupling matrix) to extract work
from the system leading to increased purification of Bob.
We call this method QET-2A. In terms of resources, this
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FIG. 2. Final purity as a function of the inverse of the tem-
perature, β, obtained for the fully unitary picture on the sys-

tem AB for the example using unitaries UA = eiσ
A
yσ

an
y and

UB = eiσ
B
xσ

an
z , for k/h = 1, 3, and k/h = 5, from left to the

right, respectively. The blue lines represent the initial purity
of qubit B, and the yellow lines the final purity of B.

method, QET-2A, utilizes local couplings of the ancilla
with A and B: first a bipartite unitary generated from the
coupling of observables of the ancilla and observables of
A, and second a bipartite unitary generated from the cou-
pling of observables of the ancilla with observables of B.
We do not require the use of arbitrary bipartite unitaries.
It suffices to restrict ourselves to measurement-like oper-
ations, i.e., the coupling of an observable of the ancilla
(which plays the role of the detector indicator) and an
observable of the qubits A and B (which plays the role of
the measured quantity). (By restricting the ancilla to be
a mere quantum detector, we are not yet making full use
of the power of three qubits, hence the name QET-2A
instead of QET-3.)

As a first illustrative example, we now implement
this new method on the two qubit system described
by eqs.(1)-(2), and an ancilla with Hamiltonian Han =
hanσ

an
z . As a first simple example, consider that the an-
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cilla is coupled to the observable σx of the system A, and

later is coupled to the observable σy of B: UA = eiσ
A
yσ

an
y

and UB = eiσ
B
xσ

an
z . We obtain for the final purity of the

qubit B:

P b
f =

1

2
+
h−S

2
+[(ha + hb)2 + k2 sin4(2) tanh2(βhan)]

2(C− + C+)2h−h+

+
S2
−[h+[(ha − hb)2 + k2 sin4(2) tanh2(βhan)] + 2h2bhr]

2(C− + C+)2h−h+

− 2hrS+S−[h2a + k2 sin4(2) tanh2(βhan)]

2(C− + C+)2h−h+
(10)

where

h± := (ha ± hb)2 + k2, hr :=

√
1

2

(
h2− + h2+

)
− 8h2ah

2
b

S± := sinh
√
h±β, C± := cosh

√
h±β. (11)

Fig. 2 shows three plots with results for different values
of the coupling strength between A and B.

After this example, we now optimize the purification
of qubit B with respect to the way in which the ancilla
couples to the systems A and B. Assuming that this op-
timization is restricted to coupling of observables of the
ancilla with observables of A and B we find optimal val-
ues for Ua and Ub numerically. Our results are presented
in Fig. 3, in comparison with PPA-3 for k/h = 1. Notice
that PPA-3 involves the full power of three qubit opera-
tions. Also notice that since PPA-3 destroys the system
correlations, it fails to cool down the target qubit beyond
its initial purity in some regimes. This is because break-
ing the correlations can be detrimental to the system
purity. Remarkably, QET-2A (fully-unitary) can yield
the same purification boosting than the POVM based
protocol and outperform PPA-3, a protocol which does
fully take advantage of three qubit operations but does
not use the system’s correlations for cooling. Note that
for weak interactions, methods like PPA-3 are optimal
to cool. However, the stronger the interactions between
the components of the subsystems (and therefore the cor-
relations in the system) the more efficient QET-cooling
methods become.

Numerical tests show that the protocol is stable under
uncertainty in the interaction Hamiltonian. To study this
sensitivity quantitatively, we added perturbations in the
interaction part of the Hamiltonian, while performing the
QET purification protocol that is optimized for the non-
perturbed case. In particular, we considered perturbed

Hamiltonians of the form V ∝ kσa
xσ

b
x + k2

h2 f(h, k)11 +
2εσa

i σ
b
j . We find that, crucially, if the value of the pa-

rameter ε (quantifying the relative difference between the
Hamiltonian assumed to optimize the protocol and the
actual Hamiltonian of the system) is small, then the rel-
ative impact of the error in the implementation of the
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FIG. 3. (Left) Final purity of QET in the unitary picture
(QET-2A) as a function of the inverse of the temperature, β,
obtained by simulation for k/h = 5, and ha = hb = han =
h. We compare with PPA-3, and the initial purity of the
ancilla and the target qubit B. (Right) Circuit summarizing
the QET-2A protocol.

protocol is very small (in our case, a relative difference
of 10−4 in the achievable purity for values of ε ≈ 0.1)
Entropy compression on interacting systems.– We

proved that QET-2A not only can purify beyond the cool-
ing limit of PPA-3, but that it can outperform PPA-3
(i.e., many iterations of entropy compression and qubit
reset with a thermal bath) by using much less resources
and while only requiring a much more limited range of
operations compared to PPA-3.

Furthermore, the fact that QET-2A is not using the
full power of applying general joint unitaries on the three
qubits (like PPA-3 does) suggests that it is possible to
further improve the cooling with the resources that are
assumed also for PPA-3.

Let us now compare the power of our unrestricted non-
local n-partite unitaries for entropy compression in inter-
acting systems with the analogous entropy compression
through PPA-n protocols which break the correlations.

For instance, let us consider the two-qubit system of
eqs.(1) and (2), starting in the Gibbs state of inverse
temperature β. We optimized the entropy compression
numerically for different ratios k/h, and we found, see
Fig.4, that we can extract more entropy from B to com-
press in A when the coupling is stronger. This is intuitive,
given that a more strongly coupled system will exhibit
more correlations in its ground state (due to entangle-
ment) and also in Gibbs states (due to classical thermal
correlations).

In fact, the unitary that optimizes the entropy com-
pression corresponds to the unitary that diagonalizes the
total state and makes a SORT in decreasing order of the
elements of the diagonal. Therefore, the unitary drives
the system towards a passive state. This indicates deep
links between work extraction and purification in non-
degenerate interacting systems, and the role of quantum
and classical correlations in algorithmic cooling.
Conclusions.– We showed that by exploiting preex-

isting interaction-induced correlations, quantum energy
teleportation can be used to significantly improve al-
gorithmic cooling in systems with interactions. The
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FIG. 4. Comparison between entropy compression with (blue
solid line) and without (green dashed line) using correlations
for 3 qubits. For reference, initial purity for a Gibbs state
of inverse temperature β is shown in red dotted line. The
Hamiltonian is H = hσA

z + hσB
z + hσan

z + kσa
xσ

b
x + kσb

xσ
an
x , we

are using A as the target, and compressing the entropy on B
and AN. The stronger the interaction, the more purification
can be achieved.

stronger the interactions, the higher is the purification
gain. Further increases in the achievable purity should
be possible, e.g., by optimizing the ancilla interactions
or considering larger interacting systems where there are
more correlations in the ground state. QET-cooling may
be a good candidate for efficient cooling of strongly in-
teracting systems in, e.g., ultra-strongly coupled super-
conducting qubits [34–36].
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