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We prove that there is no finite-alphabet nonlocal box that generates exactly those correlations
that can be generated using a maximally entangled pair of qubits. More generally, we prove that if
some finite-alphabet nonlocal box is strong enough to simulate arbitrary local projective measure-
ments of a maximally entangled pair of qubits, then that nonlocal box cannot itself be simulated
using any finite amount of entanglement. We also give a quantitative version of this theorem for
approximate simulations, along with a corresponding positive result.

A classic goal of quantum information research is to
understand the power of quantum nonlocality: Which
nonlocal tasks can be performed using quantum entangle-
ment? For example, quantum entanglement is helpful for
playing certain nonlocal games, but it cannot be used to
achieve faster-than-light communication. The notion of
a correlation box serves as a conceptual tool for reasoning
about this question. A correlation box is a hypothetical
randomized “channel” through which two separated par-
ties, Alice and Bob, can interact. Mathematically, a cor-
relation box is a function C : X × Y → ∆(A×B), where
X,Y,A,B are countable (finite or countably infinite) al-
phabets and ∆(A× B) denotes the set of all probability
distributions over A×B. We imagine that Alice chooses
x ∈ X and Bob chooses y ∈ Y . A sample (a, b) is drawn
from C(x, y), and Alice is given a and Bob is given b. We
will abuse notation and write C : X × Y → A×B.

The canonical example [1, 2] is the Popescu-Rohrlich

box CPR : {0, 1} × {0, 1} → {0, 1} × {0, 1}, defined by

CPR(x, y) =

{

(0, xy) with probability 1/2

(1, 1− xy) with probability 1/2.
(1)

PR boxes cannot be used to communicate, since the
marginal distributions of a and b are uniform regardless of
x and y. However, CPR is a nonlocal box: given access to
a PR box, Alice and Bob can perform tasks that would
be impossible if they were isolated in a classical world.
The standard example is winning the CHSH game [3]
with certainty. As usual, we model the classical scenario
by assuming that each player’s behavior is a function of
his or her private input and a random variable shared
between the two players.
For any correlation box C, rather than analyzing the

capabilities of two parties with access to C, we can in-
stead analyze the problem of simulating C. That is, Al-
ice is given x ∈ X and Bob is given y ∈ Y . Alice is
supposed to output a ∈ A and Bob is supposed to out-
put b ∈ B such that (a, b) has distribution C(x, y). Let
Q be the class of all correlation boxes that can be simu-
lated if Alice and Bob have unlimited shared randomness

and an arbitrary but finite amount of entanglement. The
question at the beginning of this letter can now be sharp-
ened: Which correlation boxes are in Q? For example,
the Tsirelson bound [4] implies that CPR 6∈ Q.
Let B be the class of all correlation boxes that can be

simulated if Alice and Bob have unlimited shared ran-
domness, each holds one of a pair of maximally entan-
gled qubits, and they are only allowed to make projec-
tive measurements. Clearly, B ⊆ Q; understanding B

is a good first step toward understanding Q. Bell [5] fa-
mously showed that there are correlation boxes in B that
cannot be simulated using only shared randomness.
A long line of work [6–13] investigated the problem

of simulating Bell correlations using classical communi-

cation, culminating in a protocol by Toner and Bacon
[13] for simulating any correlation box in B using shared
randomness and a single classical bit of one-way commu-
nication. Cerf et al. [14] improved on the Toner-Bacon
theorem by showing that instead of a bit of communica-
tion, it suffices to have a single PR box. (Taking a cue
from quantum mechanics, we think of correlation boxes
as “single use only”.)
In general, if every correlation box in B can be simu-

lated using a particular correlation box C, then C can be
interpreted as an upper bound on the power of B. Part of
what makes the result by Cerf et al. so appealing is that
CPR has finite alphabets, making it an extremely explicit

upper bound on the power of B: a PR box is a “discrete”
device. On the other hand, a “defect” of the result by
Cerf et al. is that CPR 6∈ B, and hence CPR is a loose

upper bound. Local projective measurements of a Bell
pair can be simulated using a PR box, but not vice versa.
It is natural, therefore, to hope to construct some finite-

alphabet correlation box C∗ such that every correlation
box in B can be simulated using C∗, and C∗ is in B.
Such a correlation box C∗ would exactly characterize B,
greatly clarifying the power of quantum nonlocality. Un-
fortunately, our main result is that no such correlation

box C∗ exists.

Actually, the situation is even worse in several respects.
The simulations we have discussed so far are one-query
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reductions. In general, if C1 and C2 are correlation boxes,
a k-query reduction from C1 to C2 is a protocol for simu-
lating C1 in which Alice and Bob have unlimited shared
randomness and k copies of C2 that they use in a pre-
specified order. We say that C1 reduces to C2 if there
is a k-query reduction from C1 to C2 for some finite k.
We prove that C∗ does not exist even if we allow count-

ably infinite input alphabets, we allow an arbitrary finite
amount of entanglement when simulating C∗, we consider
general reductions, and we only try to simulate correla-
tion boxes in B with binary alphabets :

Theorem 1. Suppose C∗ ∈ Q has countable input al-

phabets and finite output alphabets. Then there is some

correlation box C : {0, 1} × {0, 1} → {0, 1} × {0, 1} such

that C ∈ B, but C does not reduce to C∗.

Adopting terminology from computational complexity
theory, if C is a correlation box and C is a class of corre-
lation boxes, we say that C is C-complete if C ∈ C and
every correlation box in C reduces to C.

Corollary 1. There does not exist a finite-alphabet B-

complete correlation box.

Corollary 2. There does not exist a finite-alphabet Q-

complete correlation box.

Our results can be thought of as “bad news” for the
project of understanding the power of quantum nonlocal-
ity. In this respect, our results are in the same spirit as
previous work showing that certain information-theoretic
conditions fail to exactly characterize quantum correla-
tions [15, 16]. Our results should also be considered in
the context of the body of research [17–23] investigating
the power of correlation boxes in their own right, apart
from quantum entanglement. In particular, Barrett and
Pironio [17] gave a reduction from any non-signaling cor-
relation box with binary output alphabets to CPR. Our
result shows that there is no corresponding phenomenon
for B. Furthermore, Dupuis et al. [19] showed that no
finite-alphabet correlation box is complete for the class of
non-signaling correlation boxes; our result is analogous.

We now sketch a proof of a weaker version of Theo-
rem 1. We will consider a certain class of nonlocal games,
parameterized by a real value p. Lawson, Linden, and
Popescu [24] showed that the optimal entangled success
probability for these games depends nonlinearly on p. On
the other hand, if C∗ is a finite-alphabet correlation box,
the optimal success probability of a strategy using shared
randomness and a single query to C∗ can be shown to be
some piecewise-linear function of p. Hence, C∗ is not Q-
complete with respect to one-query reductions. A more
careful analysis will justify the stronger claim expressed
by Theorem 1. We remark that our argument is simi-
lar in spirit to Bell’s original proof [5] of his namesake
theorem.

We also give a quantitative version of our result for
approximate simulations. An ε-error reduction is defined
like an ordinary reduction except that we allow ε total
variation error.

Theorem 2. Suppose C∗ : X × Y → A × B is a finite-

alphabet correlation box in Q. Then there is some corre-

lation box C : {0, 1} × {0, 1} → {0, 1} × {0, 1} in B such

that for every k, if there is a k-query ε-error reduction

from C to C∗, then

k4 · (2|X |)4|A|k · (2|Y |)4|B|k ≥ Ω(1/ε). (2)

Conversely, for any ε > 0, we give a simple con-
struction of C∗ : X × Y → {1,−1} × {1,−1} with
|X | = |Y | ≤ O(1/ε2) such that C∗ ∈ B and every cor-
relation box in B reduces to C∗ via a one-query ε-error
reduction. Note that for |A| = |B| = 2, k = 1, Theorem 2
implies that |X | · |Y | must be at least 1/εΩ(1). On the
other hand, when |A|, |B|, k are large, Theorem 2 might
be very far from tight.

PROOFS OF NEGATIVE RESULTS

For 0 ≤ p, q ≤ 1, the biased CHSH game CHSH[p, q]
is defined as follows [24]: The referee picks x, y ∈ {0, 1}
independently at random, with Pr[x = 1] = p, Pr[y =
1] = q. Alice gets x and Bob gets y. Alice outputs
a ∈ {0, 1} and Bob outputs b ∈ {0, 1}. They win if
a+ b = xy (mod 2). Alice and Bob know p and q. The
standard CHSH game [3] is the case p = q = 1

2 .
We can think of a correlation box C : {0, 1}×{0, 1}→

{0, 1} × {0, 1} as a strategy for the biased CHSH game.
The probability that C wins CHSH[p, q] is the probability
that a+ b = xy (mod 2), where (a, b) = C(x, y) and the
probability is over both the internal randomness of C and
the inputs x, y. (The inputs (x, y) are independent of the
internal randomness of C.) Lawson et al. computed the
optimal success probability for entangled strategies:

Lemma 1 ([24]). If 1
2 ≤ q ≤ 1

2p ≤ 1, then there

exists Cp,q ∈ B that wins CHSH[p, q] with probability
1
2+

1
2

√
2
√

q2 + (1− q)2
√

p2 + (1− p)2. Furthermore, no

correlation box in Q achieves higher win probability.

Throughout the rest of the paper, we define

ω(p) =
1

2
+

1

2

√

p2 + (1− p)2, (3)

which is the bound of Lemma 1 for q = 1/2. We now
prove that playing CHSH[p, 1/2] near-optimally using
some C∗ ∈ Q requires approximating ω by a small set
of linear functions (i.e. polynomials in p of degree one).
Roughly, the idea is that there are only so many things
one can do with C∗, and each of them gives rise to a strat-
egy for the biased CHSH game with a success probability
that depends linearly on p.
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Lemma 2. Suppose C∗ : X × Y → A × B is in Q and

k ∈ N. For p ∈ [1/2, 1], let Cp,1/2 be the box of Lemma 1.
There is a set LC∗,k of linear functions R → R such that:

1. For every p ∈ [1/2, 1] and every ε > 0, if there

exists a k-query ε-error reduction from Cp,1/2 to C∗,

then there exists ℓ ∈ LC∗,k such that |ℓ(p)−ω(p)| ≤
ε.

2. If X,Y,A,B are all finite, then |LC∗,k| is at most

(2|X |)2|A|k · (2|Y |)2|B|k . If X,Y are countable and

A,B are finite, then LC∗,k is countable.

Proof. A deterministic k-query C∗-protocol is a protocol
that uses k copies of C∗ in a deterministic way. (The
output of such a protocol is random, but only because of
the internal randomness of C∗.) For each such protocol
Π, let ℓΠ(p) be the probability that Π wins CHSH[p, 1/2].
Then ℓΠ is a linear function, since

ℓΠ(p) =
1− p

2
P00 +

1− p

2
P01 +

p

2
P10 +

p

2
P11, (4)

where Pxy is the probability that a + b = xy (mod 2)
where (a, b) = Π(x, y). Let LC∗,k be the set of all ℓΠ.

To prove the first item, let Λ be a k-query ε-error re-
duction from Cp,1/2 to C∗. We can think of Λ as a distri-

bution over deterministic C∗-protocols Π. By the correct-
ness of the reduction, |EΠ∼Λ[ℓΠ′(p)]− ω(p)| ≤ ε. The
best case is at least as good as the average case, so there
is a deterministic protocol Π∗ such that ℓΠ∗

(p) ≥ ω(p)−ε.
Since C∗ ∈ Q and Q is closed under reductions, Π∗ im-
plements a correlation box in Q. Therefore, by the op-
timality clause of Lemma 1, ℓΠ∗

(p) ≤ ω(p), and hence
|ℓΠ∗

(p)− ω(p)| ≤ ε.

To prove the second item, we bound the number of
deterministic k-query C∗-protocols. Such a protocol can
be specified by:

• Functions qi : {0, 1} × Ai−1 → X for each 1 ≤
i ≤ k, telling the ith query that Alice makes as
a function of her input and the query responses
she has seen so far, and corresponding functions
ri : {0, 1} ×Bi−1 → Y for Bob.

• A function s : {0, 1} × Ak → {0, 1}, telling the
output Alice gives as a function of her input and
all query responses, and a corresponding function
t : {0, 1} ×Bk → {0, 1} for Bob.

If X,Y are countable and A,B are finite, then there are
only countably many possibilities for each of these func-
tions, so there are countably many such protocols. Sup-
pose now that X,Y,A,B are all finite and |A|, |B| ≥ 2.

The number of possibilities for qi is |X |2|A|i−1

, and sim-

ilarly for ri. The number of possibilities for s is 22|A|k ,

and similarly for t. Therefore, |LC∗,k| is bounded by

(

k
∏

i=1

|X |2|A|i−1

)(

k
∏

i=1

|Y |2|B|i−1

)

· 22|A|k · 22|B|k (5)

= |X |2
∑

i
|A|i−1 · |Y |2

∑
i
|B|i−1 · 22|A|k · 22|B|k (6)

≤ |X |2|A|k · |Y |2|B|k · 22|A|k · 22|B|k (7)

= (2|X |)2|A|k · (2|Y |)2|B|k . (8)

Finally, if A is a singleton set, the step above where we
bounded

∑

i |A|i−1 by |A|k was not valid, but in this case
q1, . . . , qk do not need to be specified anyway, so the final
bound still holds. Similarly if B is a singleton set.

Next, we show that ω cannot be well-approximated by
a small set of linear functions. To prove Theorem 1, the
following trivial fact suffices.

Lemma 3. Suppose L is a countable set of linear func-

tions R → R. Then there is some p ∈ [1/2, 1] such that

for every ℓ ∈ L, ℓ(p) 6= ω(p).

Proof. Suppose ℓ(p) = ω(p), where ℓ ∈ L. Rearranging,

p2 + (1 − p)2 = r(p)2, (9)

where r(p) is another linear function. The quadratic ex-
pression on the left hand side of (9) is not a square (e.g.
the discriminant is −4 6= 0). Therefore, (9) is a non-
degenerate quadratic equation, so it has at most two so-
lutions p. So ℓ intersects ω at most twice, and hence L
intersects ω in countably many places.

Proof of Theorem 1. Fix C∗ : X × Y → A × B, where
X,Y are countable, A,B are finite, and C∗ ∈ Q. We will
show that there is some choice of p so that there is no
reduction from Cp,1/2 to C∗; since Cp,1/2 ∈ B and Cp,1/2

has binary alphabets, this will complete the proof.

For each k ∈ N, let LC∗,k be the set of linear functions
given by Lemma 2. The alphabet bounds for C∗ imply
that LC∗,k is countable. Let L =

⋃

k∈N
LC∗,k, so that L

is still countable. By Lemma 3, choose p ∈ [1/2, 1] so
that for every ℓ ∈ L, ℓ(p) 6= ω(p). Then Cp,1/2 does not
reduce to C∗, because if there were a k-query (0-error)
reduction for some k, Lemma 2 would imply that there
was some ℓ ∈ L with ℓ(p) = ω(p).

To prove Theorem 2, we need a quantitative lower
bound on the error of any approximation of ω by linear
functions:

Lemma 4. Pick p ∈ [1/2, 1] uniformly at random. Then

for any linear function ℓ : R → R and any ε > 0,

Pr [|ℓ(p)− ω(p)| ≤ ε] ≤ O(
√
ε). (10)
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Proof. Let I = [1/2, 1]. We first compute

ω′′(x) =
1

2

[

2

(

x− 1

2

)2

+
1

2

]−3/2

≥ 1

2
on I. (11)

Hence ω is uniformly convex on I.

Without loss of generality we can assume that the
graph of ℓ intersects the graph of ω twice (with a point
of tangency counted as a double intersection). After all,
if ℓ < ω on I, translate ℓ up until the first moment of
equality with ω, thus decreasing the pointwise error be-
tween ℓ and ω at every x ∈ I. If ℓ is then tangent to ω,
we are done. Otherwise, ℓ intersects ω at an endpoint, so
rotate ℓ up about this point until it is tangent to ω (no
other intersections occur because ω is uniformly convex).
Again, pointwise errors do not increase under this rota-
tion. Similar considerations hold if initially ℓ > ω or ℓ
intersects ω at one point.

Therefore, suppose ℓ linearly interpolates ω at the (po-
tentially coincident) points x1, x2 ∈ I. By a standard
argument in interpolation theory, for all x ∈ I, there
exists ξx ∈ I such that

ω(x)− ℓ(x) =
ω′′(ξx)

2
(x− x1)(x− x2). (12)

By (11), |ω(x) − ℓ(x)| ≥ 1
4 |x− x1||x− x2|. In particular,

when min{|x − x1|, |x − x2|} > 2
√
ε, |ω(x) − ℓ(x)| > ε.

The probability that p is within 2
√
ε of either x1 or x2 is

O(
√
ε).

Proof of Theorem 2. Fix C∗ : X × Y → A × B, where
X,Y,A,B are finite and C∗ ∈ Q. Let LC∗,k be the set
of linear functions given by Lemma 2. Pick p ∈ [1/2, 1]
uniformly at random. By Lemma 4 and the union bound,
for any εk > 0, the probability that some ℓ ∈ LC∗,k

satisfies |ℓ(p) − ω(p)| ≤ εk is at most O(
√
εk · |LC∗,k|).

Therefore, by the union bound over k, the probability
that there is such an ℓ for any k is

O

(

∞
∑

k=1

√
εk · |LC∗,k|

)

. (13)

Choose εk so that
√
εk · |LC∗,k| = c/k2, where c is a

sufficiently small constant so that the bound in (13) is
strictly less than 1. (Such a c exists because

∑

k 1/k
2

converges.) This implies εk ≥ Ω
(

k−4|LC∗,k|−2
)

. Hence,
by Lemma 2,

k4 · (2|X |)4|A|k · (2|Y |)4|B|k ≥ Ω(1/εk). (14)

By our choice of εk, there exists some p so that for
every k, for every ℓ ∈ LC∗,k, |ℓ(p) − ω(p)| > εk. Choose
C = Cp,1/2. By Lemma 2, if there is a k-query ε-error
reduction from C to C∗, then ε > εk.

We end this section with two simple consequences of
our main results. We say that C1 ≤ C2 if there is a reduc-
tion from C1 to C2. We say that C1 < C2 (“simulating
C1 is strictly easier than simulating C2”) if C1 ≤ C2 and
C2 6≤ C1.

Theorem 3. For any finite-alphabet correlation box C1 ∈
B, there is another finite-alphabet correlation box C2 ∈ B

such that C1 < C2.

Proof. By Theorem 1, there is a correlation box C ∈ B

with binary alphabets such that C 6≤ C1. Write C1 :
X1 × Y1 → A1 × B1. By relabeling if necessary, we can
assume that 0, 1 6∈ X1, Y1. Define X2 = X1∪{0, 1}, Y2 =
Y1 ∪ {0, 1}, A2 = A1 ∪ {0, 1}, B2 = B1 ∪ {0, 1}. Define
C2 : X2 × Y2 → A2 ×B2 by the following B protocol: If
x ∈ X1, then Alice does what she would have done in the
protocol witnessing C1 ∈ B. Otherwise, if x ∈ {0, 1}, she
does what she would have done in the protocol witnessing
C ∈ B. Bob acts similarly. By construction, C1 ≤ C2

and C ≤ C2, so by transitivity, C1 < C2.

The same technique used to prove Theorem 3 can
also be used to generalize Theorem 1 as follows.
Suppose we have a finite set of correlation boxes

{C(1)
∗ , C

(2)
∗ , . . . , C

(t)
∗ } ⊆ Q, each with countable input al-

phabets and finite output alphabets. As in the proof
of Theorem 3, we can construct a single correlation
box C∗ ∈ Q with countable input alphabets and fi-

nite output alphabets such that every C
(i)
∗ reduces to

C∗. Hence, by Theorem 1, there is a correlation box
C : {0, 1}×{0, 1} → {0, 1}×{0, 1} such that C ∈ B, but
it is impossible to simulate C using shared randomness

and any finite number of copies of each C
(i)
∗ .

POSITIVE RESULTS

We now show how to construct a finite-alphabet cor-
relation box that is approximately complete for B. The
construction is simple, and essentially consists of a dis-
cretization of the Bloch sphere [25].

Theorem 4. For every ε > 0, there exists C∗ :
{1, . . . , T } × {1, . . . , T } → {1,−1} × {1,−1} with T ≤
O(1/ε2) such that C∗ ∈ B, and for every C ∈ B, there

is a one-query ε-error reduction from C to C∗.

Proof. Let S2 denote the unit sphere in R
3. A pair of

local projective measurements as in the definition of B
can be described by x ∈ S2 chosen by Alice and y ∈
S2 chosen by Bob; the (±1)-valued outcomes a, b satisfy
E[a] = E[b] = 0 and E[ab] = x · y. (For example, x and
y might specify spin axes along which Alice and Bob are
measuring.)
Let c1, c2, . . . , cT ∈ S2 be points such that every point

in S2 is within ε of some ci in ℓ2 distance. Such a collec-
tion of points exists with T ≤ O(1/ε2). The correlation
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box C∗ simply makes the measurements described by ci
and cj , where i is the input to Alice and j is the input
to Bob. By construction, C∗ ∈ B.
For the reduction, when Alice and Bob need to measure

according to x, y ∈ S2, they simulate the measurement
by inputting i, j to C∗, where i and j minimize ‖ci− x‖2
and ‖cj − y‖2. Correctness follows from the fact that

|x · y − ci · cj | ≤ |x · cj − ci · cj |+ |ci · y − ci · cj | (15)

≤ ‖x− ci‖2 + ‖y − cj‖2. (16)

Proposition 1. There exists C∗ : N×N → {0, 1}×{0, 1}
such that C∗ ∈ B, and for every C ∈ B, ε > 0, there is a

one-query ε-error reduction from C to C∗.

Proof sketch. Use a countable dense subset of S2.

CONCLUSION

To better understand quantum entanglement, it is de-
sirable to characterize what can and cannot be achieved
using quantum nonlocality. In this letter, we have ruled

out a natural type of characterization, even if attention
is restricted to projective measurements of a single Bell
pair. We hope that this letter inspires future researchers
to circumvent our results by formulating a different type
of characterization of the power of quantum nonlocality.
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Nature communications 6 (2015).
[17] J. Barrett and S. Pironio, Physical Review Letters 95,

140401 (2005).
[18] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu,

and D. Roberts, Physical Review A 71, 022101 (2005).
[19] F. Dupuis, N. Gisin, A. Hasidim, A. A. Méthot, and
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