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Motivated by the experimental realization of quantum spin models of polar molecule KRb in
optical lattices, we analyze the spin 1/2 dipolar Heisenberg model with competing anisotropic, long-
range exchange interactions. We show that by tilting the orientation of dipoles using an external
electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region
similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route
to potentially realize quantum spin liquid without the need for triangular or kagome lattice. The
ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently
show a spin disordered region between the Neel, stripe, and spiral phase. The existence of a finite
quantum paramagnetic region is further confirmed by unbiased variational ansatz based on tensor
network states and tensor renormalization group.

Understanding highly entangled quantum matter re-
mains a challenging goal of condensed matter physics [1].
One paradigmatic example is quantum spin liquids in
frustrated spin systems which defy any conventional long
range order characterized by broken symmetry at zero
temperature [1–3]. Instead the ground state features
long-range entanglement and non-local excitations. Spin
liquids are also fertile grounds to study quantum phases
described by gauge field theories and topological or-
der [4]. While the existence of spin liquids has been firmly
established in a numbers of exactly solvable models, e.g.,
the toric code [5] or the honeycomb Kitaev model [6],
the nature of the ground states for many frustrated spin
models, e.g., Heisenberg model on kagome lattice or J1-
J2 model on square lattice, still remains controversial de-
spite the great theoretical progress in recent years [7–11].
An unambiguous experimental identification of quantum
spin liquid in solid state materials also seems elusive [1].
It is then important to explore new physical systems that
can cleanly realize well-defined spin models which have
potential spin liquid ground states.

Recent breakthrough experiments on magnetic atoms
[12] and polar molecules [13, 14] confined in deep opti-
cal lattices introduced a new class of lattice spin mod-
els with competing exchange interactions that are long-
ranged and anisotropic. The resulting spin Hamiltonians,
such as the dipolar XXZ and dipolar Heisenberg model,
are highly tunable by the external field that couple to
the magnetic/electric dipoles [15, 16]. Here we show
that these models on square lattice feature strong ex-
change (not geometric) frustration and a quantum para-
magnetic ground state for intermediate dipole tilting an-
gles. This claim is consistently supported by physical ar-
guments, two independent semi-classical analytical meth-
ods, and full numerical calculation based on tensor net-
work ansatz [17–21]. Our key insight is that spin liquid

may arise naturally from the system of tilted, interacting
dipoles on square lattice, without the requirement of pe-
culiar (e.g. triangular or kagome) lattices or exotic (e.g.
Kitaev or ring-exchange) interactions.
The dipolar XXZ and Heisenberg model. We first define

the dipolar XXZ model on square optical lattice,

HXXZ =
J
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Here i, j label the lattice sites, Si = (Sx
i , S

y
i , S

z
i ) are the

spin (or pseudospin) operators at site i, and η is the ex-
change anisotropy. The key new feature here is that the
coupling between the two spins depends on their rela-
tive position r = ri − rj and the external field (dipole)

direction d̂,

f(r) = [1− 3(r̂ · d̂)2](a/r)3, (2)

with a the lattice constant [Fig. 1(a)]. This geomet-
ric factor, characteristic of the dipole-dipole interac-
tion, dictates that spin interactions are long-ranged and
anisotropic. For the special case of η = 1, HXXZ reduces
to the dipolar Heisenberg model,

Hd =
J

2

∑
i 6=j

f(ri − rj)Si · Sj , (3)

and for η = 0, it reduces to the dipolar XY model, HXY .
Spin models of the form of HXXZ have been realized

experimentally in two settings. In Ref. [12], the spin
dynamics of a gas of 52Cr atoms in optical lattices was
observed. Each Cr atom carries a magnetic moment of
7µB and hyperfine spin S = 3. An external magnetic field
is used to align the magnetic dipoles in the direction of
d̂. Such a dipolar gas of Cr in a deep lattice is shown to
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be described by HXXZ with J = −µ0(gµB)2/4πa3 < 0
and η = −2 [12]. Note that J induced by the dipolar in-
teraction is, contrary to the superexchange, independent
of the tunneling and it can be set as the unit of energy.

Polar molecules such as 40K87Rb confined in optical
lattices with negligible tunneling provide another way to
realize HXXZ with S = 1/2 and tunable J and η [13].
Each molecule carries an electric dipole moment d and
undergoes rotation with angular momentum J [see Fig.
1(a)]. Here the pseudospin 1/2 refers to two rotational
states of the molecule labeled by |j,m〉, where j is the
quantum number of the rotational angular momentum J
and m is its projection onto the quantization axis, chosen
as the direction of the external electirc field E. More
details can be found in Ref. [13, 16, 22]. The dipole-dipole
interaction projected onto the sub-Hilbert space of the
pseudospins then takes the form of a spin Hamiltonian,
where the spin flips correspond to transitions between the
rotational states. For example, by choosing |j,m〉 = |0, 0〉
and |1, 0〉 as the pseudospin down and up respectively,
Refs. [16, 22] showed that the systems is described by
effective Hamiltonian HXXZ with J = D2

t /2πε0a
3 > 0

and η = (D1 − D0)2/2D2
t > 0. Here the dipole matrix

element Dt = 〈1, 0|d0|0, 0〉, D1 = 〈1, 0|d0|1, 0〉, D0 =
〈0, 0|d0|0, 0〉, and d0 together with d± form the vector
dipole operator in spherical basis [16, 22].

The anisotropy η increases monotonically with E. As
shown in Ref. [16], when E ' 1.7B/|d| with B the en-
ergy splitting of the two pesudospin states, η = 1 and
one arrives at the dipolar Heisenberg model Hd. In the
KRb experiment [13] carried out at zero field and cubic
lattice, η → 0, the dipolar XY model HXY was realized
with J on the order of 100Hz. Despite the low filling
factor and high entropy, coherent spin dynamics was ob-
served via Ramsey spectroscopy [13] and modeled theo-
retically in Ref. [14]. Recently Yao et al. [16] considered
general η and worked out the phase diagram of HXXZ

on the Kagome and triangular lattice using DMRG. For
both lattices, they found evidence for quantum spin liq-
uid centering around the Heisenberg limit, η = 1 and
θ = 0, in which θ is defined by d̂ · x̂ = sin θ cosφ with x̂
representing a base vector of the square lattice. Thus the
physics is connected to geometrically frustrated Heisen-
berg model on both lattices, with additional longer range
interactions and anisotropy η.

In the paper, we study the phases of Hd on square
lattice as the dipoles are tilted towards the lattice plane
[see Fig. 1(a)] for S = 1/2 and J > 0. We show that
strong frustration occurs at intermediate dipole tilting
angle θ, leading to a quantum paramagnetic ground state.
We emphasize that here the frustration is not imposed by
the lattice geometry, but instead due to the competition
between the exchange interactions, analogous to the J1-
J2 model. Relatedly, the quantum paramagnetic phase
appears at intermediate θ values (not around θ = 0 as in
Ref. [16]) between the Neel and the stripe order. Thus, it

differs qualitatively from the spin liquids studied in Ref.
[16]. We will also employ different methods to solve the
dipolar quantum spin models.

Competing exchanges for tilted dipoles. To appreciate
the possible phases of Hd as d̂ is tuned as well as its
connection to frustrated quantum spin models [3, 23],
let us consider the leading exchange couplings between
the nearest neighbors, Jx = Jf(ax̂) and Jy = Jf(aŷ),
and the next nearest neighbors, Jd = Jf(ax̂ + aŷ) and
J ′d = Jf(ax̂− aŷ) [Fig. 1(b)]. Their relative magnitudes
and signs depend sensitively on the dipole tilting angle
θ and φ. One example is shown in Fig. 1(b) for fixed
φ = 25◦. At small θ, Jx ∼ Jy dominates because it is
about three times of Jd ∼ J ′d. The situation is remi-
niscent of the J1-J2 model in the regime of Neel order.
As θ is increased, Jd and J ′d grow relative to Jx and
Jy. The system becomes more frustrated due to the in-
creased competition of the exchanges. This is the most
interesting parameter region. Around θ ' 40◦, Jx and
Jd vanish while J ′d ∼ 0.4Jy. The model can be viewed as
coupled Heisenberg chains. For even larger θ, Jx and Jd
switch sign to become ferromagnetic, and stripe order is
expected. Clearly, the physics of Hd is much richer than
the J1-J2 model. In fact, the two models only overlap at
one single point, θ = φ = 0, where J2/J1 = 1/2

√
2 ≈ 0.35

and the system is Neel ordered.

The degree of frustration can be measured by the “spin
gap” ∆, the energy difference between the ground and the
first excited state, from exact diagonalization of Hd for a
4× 4 lattice [24]. For example, we observe a pronounced
peak in ∆ around θ ∼ 28◦ for φ = 25◦, which indicates
strong frustration and points to a gapped, spin disordered
ground state [25]. For fixed φ = 35◦, the spin structure
factor shows a clear peak at (π, π) for θ ∼ 15◦ for Neel
order, a peak at (0, π) for θ ∼ 50◦ for stripe order, but no
well defined peaks around θ ∼ 35◦, consistent with the
argument above.

Spin-wave and Schwinger-boson theory. We first ob-
tain a coarse phase diagram of Hd on the (θ, φ) plane us-
ing two widely adopted analytical methods in frustrated
quantum magnetism. This will help identify the inter-
esting regions for the more expensive tensor network cal-
culations to focus on. The starting point is the classical
solution of Hd by the Luttinger-Tisza method [26]. Hd

is of the form
∑

ij JijSi · Sj with hard spin constraint
Si = S and Jij only depends on ri − rj . A theorem
states that the classical ground state is a planar spin
spiral, Sr/S = x̂ cos(Q · r) + ŷ sin(Q · r) with ordering
wave vector Q = (Qx, Qy) [27]. The classical phase dia-
gram [24] consists of three phases. The first is the Neel
order corresponding to Q = (π, π) for small θ. The sec-
ond is the stripe phase with Q = (0, π) for large θ but
not too large φ. These two spin orders are collinear. The
third, spiral phase fills the rest of the phase diagram, for
large θ and φ, where Q varies continuously and in general
incommensurate with the lattice.
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FIG. 1. (a) Dipolar molecules such as KRb confined in square
optical lattice. The direction of the dipoles d is tuned by the
electric field E. Two rotational states of the molecules play
the role of pseudospin up and down. The system is described
by the effective XXZ model Eq. (1). With proper choice of
E, it reduces to the dipolar Heisenberg model Hd in Eq. (3).
(b) Leading exchange interactions Jx, Jy, Jd and J ′d (inset)
as functions of the dipole tilting angle θ for fixed φ = 25◦.
Strong frustration occurs at intermediate θ.

Beyond the classical limit, quantum fluctuations will
suppress the magnetic order and shift the phase bound-
ary. These effects can be described qualitatively by mod-
ified spin wave theory [28–30]. In the Holstein-Primakoff
representation, we expand Hd in series of 1/S and keep
up to the quartic order of bosonic operators, i.e., we
take into account the interactions between the linear
spin waves. The bosonic Hamiltonian is solved by self-
consistent mean field theory [24]. The result is summa-
rized in Fig. 2(a). We find that the phase boundary of
the Neel (stripe) phase moves towards smaller (larger)
θ values, opening up an intermediate region in between
where the magnetization vanishes. The spiral phase also
recedes to higher φ values. We label this quantum para-
magnetic region with QP. This is precisely the regions
where the various exchanges compete and the system is
most frustrated.

Alternatively, we can take into account quantum fluc-
tuations by rotationally invariant Schwinger boson mean
field theory which is nonperturbative in S [31, 32]. It
is a well tested method capable of describing both mag-
netically ordered and spin liquid states of frustrated spin
models [33–36]. The resulting phase diagram is shown
in Fig. 2(b). Here each magnetic order corresponds to
condensation of bosons at certain wave vector Q. Within
a finite strip region labelled by QP between the Neel and
stripe phase, the condensation fraction vanishes and the
spin excitations are gapped, corresponding to a quantum
paramagnetic phase. The fact that two different approx-
imations agree on the existence of QP indicates that it
must be a robust feature of the model Hd.

Phase diagram from tensor network ansatz. Varia-
tional ansatz based on tensor network states [17–19] have
recently emerged as an accurate and unbiased algorithm
to solve two dimensional frustrated quantum spin mod-
els [11, 37–39]. In this approach, the ground state many-

FIG. 2. Phase diagram of Hd from (a) modified spin wave
theory and (b) Schwinger boson mean field analysis. Both
methods reveal a quantum paramagnetic phase (QP) amidst
the three long ranged ordered phases: Neel, stripe, and spiral.

body wave function |Ψ〉 is constructed from a network
of tensors Ti defined on lattice site i: |Ψ〉 = tr

∏
i Ti,

where tr stands for contraction of neighboring tensors.
Each tensor Ti has four virtual legs (indices), each with
bond dimension D designed to build up the quantum en-
tanglement between lattice sites, and one physical leg
representing the spin. We choose a L × L cluster as
the unit cell with periodic boundary conditions. The
algorithm starts with L2 random tensors and imagi-
nary time evolution is used to update the local tensors,
|ψ′〉 = exp(−τH)|ψ〉, until convergence is achieved. We
adopt the simple update scheme [40] based on singular
value decomposition (SVD). By using the Trotter-Suzuki

formula exp(−τH) ≈
∏4

i=1 exp(−τHi) + O(τ2), each it-
eration of projection for one plaquette can be done us-
ing exp(−τHi) (i = 1, 2, 3, 4) in four separate steps, in
which each step evolves three sites (a right triangle) in
one plaquette with Hi contains only three terms of the
Hamiltonian. For example, H1,2 contains Jx, Jy, and Jd
terms and H3,4 constains Jx, Jy and J ′d terms (See Ref.
[11, 24, 41, 42]).

The expectation value of a local operator Oj at site
j, 〈Oj〉 = 〈Ψ|Oj |Ψ〉/〈Ψ|Ψ〉, can be computed by ten-
sor contraction, 〈Oj〉 = tr(Oj

∏
i 6=j Ti)/tr

∏
i Ti where

Ti = T †i Ti and Oj = T †jOjTj . We evaluate it using an
iterative, real space coarse-graining procedure known as
tensor renormalization group which enables one to reach
the thermodynamic limit [20, 21]. In this way, we cal-
culate the order parameter such as the magnetization
M =

√
〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 [24].

With increasing D, quantum fluctuations beyond spin
wave or Schwinger boson analysis are taken into account.
The suppression of M is illustrated in Fig. 3(a) for dif-
ferent D values at fixed φ = 15◦. By extrapolating the
results to infinite D, we can determine the phase bound-
ary of the Neel and stripe phase. Repeating the proce-
dure for different φ values, we obtain the phase diagram
Fig. 3(b). It firmly establishes the existence of a finite
quantum paramagnetic region (in red), about one degree
wide in θ and persisting from φ = 0 up to φ = 20◦, where
the magnetization is completely suppressed to zero. The
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FIG. 3. (a) The magnetizations M as function of θ for fixed
φ = 15◦ and increasing D = 2, 4, 6. Extrapolation to infinite
D by fitting M in polynomials of 1/D shows that the mag-
netic order parameters are suppressed in a finite region of θ,
indicating a quantum paramagnetic phase. At θ = 24.0◦, a
sudden drop of M occurs inside the Neel phase. (b) Phase
diagram of Hd for φ ≤ 20◦ obtained from the tensor net-
work ansatz showing a spin-disordered, quantum paramag-
netic phase (QP) sandwiched between Neel and stripe phase,
broadly consistent with Fig. 2. Region C still has Neel or-
der, the dash line indicates where the magnetization M drops
suddenly.

paramagnetic phase is narrower than the prediction of
Schwinger boson mean field theory which tends to overes-
timate the spin disordered region. Inside the Neel phase,
there is a sudden drop of M . Note that the spiral phase
in general is incompatible with the L× L cluster choice,
even for large L. So we refrain from carrying out the
tensor network ansatz beyond φ = 20◦. On the other
hand, our numerics indicates that the phase boundary
presented in Fig. 3(b) is not expected to depend sensi-
tively on L as it varies [24]. Finally, we point out that
the quantum paramagnetic phase is a robust feature of
the dipolar XXZ model. It persists when η is tuned away
from the Heisenberg limit, e.g., down to η = 0.5 [24].

It is challenging to pin down the precise nature of the
paramagnetic phase found here in the dipolar Heisen-
berg model. Similar difficulties also arise for the J1-J2
model where the latest DMRG result [10] suggests that

the paramagnetic region may consist of a sub-region with
plaquette valence bond solid (VBS) order and a second,
spin liquid or quantum critical region. Possible spin liq-
uid states for the J1-J2 model on square lattice have been
classified within the framework of Schwinger boson mean
field theory [36]. Yet it remains unclear which one is re-
alized in the ground state. It is possible that the QP
region of Hd may contain some VBS order. Unlike the
J1-J2 model, the C4 rotation symmetry is broken in Hd

as soon as the dipoles are tilted, which may disfavor the
plaquette VBS. Due to the limitation of the cluster size,
we could not accurately compute the dimer correlation
functions. Future numerical work with larger L and D is
required to shed light on this open issue. The new formu-
lation of symmetric tensor networks [43, 44] and Lanc-
zos iteration [45] seems promising to detect the possible
topological order and accessing the excitation spectrum.

In summary, we presented consistent evidence that a
quantum paramagnetic phase emerges from the simple
physical system of interacting, tilted dipoles confined on
square optical lattice. Our analysis of the dipolar Heisen-
berg model for general (θ, φ) adds a new dimension to
frustrated quantum magnetism. It allows the exploration
of potential spin liquids beyond the J1-J2 model which
has not been realized cleanly so far. For KRb, J is about
one hundred hertz, or five nK, similar to the superex-
change scale t2/U of Fermi Hubbard model recently stud-
ied using quantum gas microscope [46–50]. Thus it seems
possible to probe the spin order or spin correlations of Hd

and related models in future experiments.
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