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We introduce a hybrid approach to applying the density matrix renormalization group (DMRG)
to continuous systems, combining a grid approximation along one direction with a finite Gaussian
basis set for the remaining two directions. This approach is especially useful for chain-like molecules,
where the grid is used in the long direction. For hydrogen chain systems, the computational time
scales approximately linearly with the number of atoms, as we show with near-exact minimal basis
set calculations with up to 1000 atoms. The linear scaling comes from both the localization of the
basis and a compression method for the long-ranged two-electron interaction. For shorter hydrogen
chains, we show results with up to triple ζ bases.

Thousands of publications are written every year deal-
ing with electronic structure calculations of solids or
molecules. Improved electronic structure algorithms can
have an enormous impact. One of the more recent ap-
proaches for molecules is the density matrix renormal-
ization group (DMRG) which originated as a method for
model condensed matter systems. In its quantum chem-
istry form (QCDMRG) [1], it is able to treat some of
the most strongly correlated molecules where most other
methods fail [2]. This has led to important applications,
such as elucidating the excited state structure of the oxy-
gen evolving photosynthesis complex [3]. However, it is
difficult to scale DMRG up to larger systems and more
complete bases: about 100-200 active basis functions is
the current practical limit. In this paper we dramati-
cally extend the capability of QCDMRG for a particular
class of systems: long chains. Surprisingly, this is accom-
plished by replacing the usual Gaussian basis in the long
direction by a fine grid. Despite increasing the number
of active orbitals by an order of magnitude, we obtain
linear scaling of the calculation time with system length,
which easily makes up for the increased basis size. The
results we present here from our initial implementation
include chains of up to 1000 hydrogen atoms—well be-
yond QCDMRG and other strongly correlated methods.

The Hilbert space used in QCDMRG is the same as
that of the Hubbard model, when equating a Hubbard
site with a single basis function. But the rapid growth of
computation time with the number of basis functions in
QCDMRG does not occur for the one-dimensional Hub-
bard model, where the calculation time is approximately
linear (when keeping a fixed number of DMRG states).
The main reason for the poor scaling of QCDMRG is the
complexity of the Hamiltonian in the basis, particularly
the two-electron terms. The electron-electron Coulomb
interaction terms are defined by two-electron integrals

Vijkl =

∫
r1

∫
r2

φi(r1)φl(r1)φj(r2)φk(r2)

|r1 − r2|
(1)

where the φi(r) are orthonormal basis functions. If the
basis functions are delocalized, as when using molecular
orbitals from a Hartree Fock calculation, the number of
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FIG. 1. The sliced basis set approach can be viewed as finely
slicing the continuum into parallel two-dimensional planes,
each spanned by a small set of transverse functions.

significant Vijkl terms scales as N4
b , where Nb is the num-

ber of basis functions. This leads to a computation time
for QCDMRG scaling as N4

bm
2 +N3

bm
3, where m is the

number of many-body states kept [4].
The nonlocality of the orthogonal basis functions also

increases the number of states m needed for a given ac-
curacy. DMRG is a low-entanglement approximation,
and the entanglement of ground states is governed by
the area law [5, 6]. The area law holds for ground states
described in terms of local, “real space” degrees of free-
dom. In a delocalized basis, a volume law of entangle-
ment holds instead (except for non-interacting systems,
a special point where the entanglement is zero in the
eigenstate basis). To capture volume-law states, m must
grow exponentially with the system size, even in one di-
mension. For this reason, some effort should be made to
localize the basis before applying standard QCDMRG,
except on very small molecules. The localization is al-
ways imperfect—the basis functions have oscillating tails
which tend to be slowly decaying.

Hypothetically, one could get rid of both the N4
b scal-

ing and the increase in entanglement from extended basis
functions by going to a real-space grid defined by finite
differences. In such a grid the interactions are defined as
Vij n̂in̂j , where n̂i is the density operator on site i. For
model one-dimensional continuum systems, this is cur-
rently the most powerful approach, and we have used it
to simulate systems of 100 pseudo-hydrogen atoms with
about 20 grid points per atom [7]. A key part of using a
one-dimensional grid is compressing the interactions by
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FIG. 2. Electronic density in the y− z plane of a linear chain
of 10 hydrogen atoms, equally spaced at a near neighbor dis-
tance R = 2.4 a.u., calculated in a sliced cc-pVDZ basis (with
No = 4). Dimerization induced by the open boundaries is vis-
ible, representing the strong tendency to form H2 molecules.

approximating long-range interactions as a sum of expo-
nentials [8, 9]. With this compression, the calculation
time grows only linearly with the number of atoms. The
problem with such a grid approach for three dimensions
is that the number of grid points would be very high, for
example of order 106 for a system of modest size.

Here we introduce a hybrid approach, which we call
sliced basis DMRG (SBDMRG). Along one particular
“z” direction over which the molecule extends furthest we
use a grid. At each grid point, the remaining transverse
dimensions, x and y, are captured by a small number
of basis functions derived from standard Gaussian basis
sets, making what we call a “slice”—see Fig. 1. The total
number of DMRG “sites” is therefore Nb = NzNo, where
Nz is the number of grid points, and No is the number
of transverse functions (“orbitals”) per grid point. The
DMRG path progresses through all orbitals on a slice,
then moves to the next. This approach has several ma-
jor advantages. First, all interaction terms Vijkl where
i and l are not on the same slice are zero, and similarly
for j and k. Thus the number of terms scales as N2

z .
Second, the remaining interactions can be compressed
very efficiently, making the dominant part of the calcu-
lation time linear in Nz. Third, since there is no spatial
extent of the basis functions in the z direction, there
is no extra entanglement due to nonlocality, potentially
reducing the number of states m needed for a given accu-
racy. The cost of applying DMRG in this setup scales as
(Nzm

3D+Nzm
3N3

o +Nzm
2N4

o ) where m is the number
of states kept in DMRG, and D is a parameter controlling
the compression of the long-range Coulomb interaction,
which scales very weakly with Nz [10].

We demonstrate our method by simulating linear
chains of hydrogen atoms. Although these are three-
dimensional systems, their linear nature makes them es-
pecially well suited for both SBDMRG and QCDMRG.
They also exhibit strong correlation, and can be quite
challenging for electronic structure methods. The elec-
tronic density in a plane through the nuclei for a typical
calculation is presented in Fig. 2.

To define the sliced basis approach, consider the
electronic structure Hamiltonian for fixed nuclei in

atomic units:

Ĥel =

∫
r

ψ̂†σ(r)

[
−1

2
∇2 + v(r)

]
ψ̂σ(r)

+
1

2

∫
r,r′

1

|r− r′| ψ̂
†
σ(r)ψ̂†σ′(r

′)ψ̂σ′(r′)ψ̂σ(r) . (2)

Summation over spin labels σ is implied and v(r) is the
potential generated by the nuclei.

Along the z direction, make a grid approximation
zn = n·a with n an integer and a a small grid spacing.
On each slice n, introduce a finite, orthonormal basis of
functions {φj(x, y)} where j = 1, 2, . . . , No. For simplic-
ity here, assume the same No and functions {φj(x, y)} on
every slice n. Later one can perform a change of basis to
adapt the basis for each slice, possibly reducing the num-
ber of functions. In terms of discrete operators ĉ†njσ and
ĉnjσ which create and destroy electrons in a slice orbital,
the Hamiltonian takes the form

Ĥ =
1

2

∑
nn′

∑
ij

tnn
′

ij ĉ†niσ ĉn′jσ (3)

+
1

2

∑
nn′

∑
ijkl

V nn
′

ijkl ĉ
†
niσ ĉ

†
n′jσ′ ĉn′kσ′ ĉnlσ . (4)

Defining ρ = (x, y) for convenience, the interaction inte-
grals are

V nn
′

ijkl =

∫
ρ,ρ′

φi(ρ)φj(ρ
′)φk(ρ′)φl(ρ)√

|ρ− ρ′|2 + (zn − zn′)2
. (5)

The i, j, k, l indices only run over the small number of
functions No on each slice. Thus, the Hamiltonian is
defined by just N2

zN
4
o interaction integrals. The single-

particle couplings are defined as

tnn
′

ij = δnn′

∫
ρ

φi(ρ)

[
−1

2
∇2

ρ + v(ρ, zn)

]
φj(ρ) (6)

− δij
1

2a2
∆nn′ . (7)

Our discrete Hamiltonian treats the z-direction kinetic
energy terms Eq. (7) on a different footing than the “inte-
gral” terms. For the z-direction kinetic energy, we treat
the basis functions as smooth functions of z, and think of
the slices as sampling them. Thus we use standard finite
difference approximations, defined via ∆nn′ . In the fol-
lowing we use an fourth-order approximation with grid
error scaling as a4. For the “integral” terms, we treat
the basis functions as completely localized and nonover-
lapping between slices The finite-difference grid approxi-
mation makes our results not strictly variational at finite
a. But we find finite-a errors for hydrogen chains of only
about 0.1 mH per atom for a = 0.1, and in the limit of
a→ 0, the results are variational.

In what follows, we construct the transverse basis func-
tions on a slice {φj(x, y)} out of standard atom-centered
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Gaussian basis sets and assume the atoms are identical.
In going from the spherical symmetry used in standard
Gaussians to slices, we switch to cylindrical symmetry.
Thus, an S-function becomes a σ function, P -functions
become π functions, etc. Whereas there are 2`+ 1 func-
tions in a spherical set with angular momentum `, there
are only two cylindrical functions for any ` > 0. For ex-
ample, a set of D functions, with coefficient ζ, becomes
the two slice basis functions

(x2 − y2) exp[−ζ(x2 + y2)] (8)

2xy exp[−ζ(x2 + y2)] . (9)

We leave out functions like Pz, which looks like a σ func-
tion on a slice, or any other function looking like a func-
tion of smaller `. (In principle, Pz could be kept as an
additional S function.) The slice basis functions are only
orthogonal between different slices. This means the func-
tions within each slice must be orthogonalized.

In the parent 3D Gaussian bases, usually some of the
functions (particularly S-type) are contracted, meaning
out of Ng original Gaussians, one uses a smaller num-
ber No of linear combination of functions for each atom:
φj =

∑Ng

m=1 c
j
m exp[−ζm(~r − ~rA)2] where j = 1 . . . No,

and No < Ng. In this case, to define the transverse
basis on a slice, we follow an approach that is useful very
generally: we form a local orbital density matrix for each
slice. Let i and i′ run over an orthonormal uncontracted
basis for the slice at zn, defined by functions ξi(x, y). Let
φk(x, y, z) be a particular 3D contracted basis function
attached to one of the atoms, and let

ηki =

∫
x,y

φk(x, y, zn)ξi(x, y) (10)

ρii′ =
∑
k

ηki η
k
i′ . (11)

The leading eigenvectors of ρ form optimal local func-
tions for representing the contracted 3D basis. More gen-
erally, ρ could come from the interacting ground state,
as a block of the single particle reduced density matrix
〈c†i ci′〉, and we would call the eigenvectors of ρ “slice nat-
ural orbitals” (SNOs). A subset with only Nj of these
SNOs would be an ideal reduced local basis. Our pro-
cedure for contractions is conceptually similar, but with
equal weighting for all 3D contracted basis functions. In
this case, for example, the sharp Gaussians used to rep-
resent the nuclear cusps only appear significantly in the
slices close to nuclei. In our hydrogen chain calculations,
if the basis has NS contracted S functions per atom, we
keep NS contracted functions per slice.

We perform DMRG with the Hamiltonian represented
as a sum of matrix product operators (MPOs), one of
which represents the long-ranged two-electron interac-
tions. For this MPO we use a compression technique
giving an MPO with matrix dimension D which is nearly

independent of system length, resulting in a linear scal-
ing computation time. (The other MPOs, say for v(r),
are naturally of constant dimension.) Consider the sim-
plest case of a single basis function per slice such that
the interactions Eq. (4) simplify to∑

n≤n′

Vnn′ n̂nn̂n′ . (12)

Here we focus on the compression of the upper triangle
of the matrix Vnn′ , giving just an outline here and more
details in the Supplemental Material [11]. For a typical
sliced basis, V is not translationally invariant; otherwise,
an MPO could be constructed based on fitting V (n −
n′) to a sum of exponentials [8]. Instead we present a
more flexible method using a sequence of singular value
decompositions (SVDs) that is a simplification of the very
general approaches described in Refs. 12 and 13.

For a particular diagonal index k, let V (k) be the rect-
angular block of V with the lower left corner at Vkk, and
extending to the upper right corner of V . An SVD gives

V (k) = U (k)S(k)W (k) (13)

where S(k) is the diagonal matrix of singular values. The
smoothness of V (n − n′) away from the diagonal makes
this SVD have a small number D of significant singular
values, allowing us to approximate S(k) as a D ×D ma-
trix, reducing the number of columns of U (k) and rows
of W (k) accordingly.

This factorized representation at index k can be related
to a similar representation at k+1. Define P (U (k)) to be
the direct sum of U (k) and a 1× 1 identity matrix, that
is add an extra column and row of zeros to the bottom
and right of U (k) and set the new diagonal element to 1.
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FIG. 3. Energy of linear chains of 10 hydrogen atoms, equally
spaced by a distance R. Dashed lines show results using
QCDMRG in standard basis sets. Solid lines with symbols
are SBDMRG results in a sliced version of each basis set.
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Then a matrix X(k+1) can be computed such that

U (k+1) = P (U (k))X(k+1) . (14)

The matrix X(k+1) has dimension (D + 1) ×D. We see
that we can recover all the U (k) from the X(k) and U (1).
Similarly, all of the W (k) can be generated in terms of a
reverse recursion involving D×(D+1) matrices Y (k). So
we can reconstruct every V (k), and thus the entire Nz ×
Nz matrix V out of the O(NzD

2) parameters in X(k),
S(k), and Y (k). In the Supplemental Material, we show
how these parameters lead to an MPO representation of
the interactions with MPO matrix dimension D + 2.

Fig. 3 shows results for chains of 10 equally-spaced hy-
drogen atoms as a function of separation R, for several
different basis sets with a = 0.1 and for comparison, stan-
dard QCDMRG results for parent 3D basis sets [14]. The
STO-6G basis is a minimal basis, contracting 6 Gaussians
to one function per atom; the sliced version also has one
function per slice. One can see that the completeness
of the standard and sliced bases are similar; which ba-
sis gives a lower energy varies with R. The double ζ
basis (cc-pVDZ) has five functions per atom [15], and
the sliced version has four per slice (no Pz). Here the
energies are even closer, but the sliced version is consis-
tently slightly lower. The triple ζ basis (cc-pVTZ) has 14
functions per atom, or 140 functions total, making this a
somewhat challenging QCDMRG calculation. The sliced
version has 9 functions per slice, with up to 561 slices.
To get the SBDMRG total energy errors to within 1 mH
took from 4-10 days (depending on R), with bond dimen-
sions m ∼ 300− 1000, running on a 2013 quad core Mac
mini with 16Gb. For triple ζ the sliced and non-sliced
energies are also very close, but with the sliced version
slightly lower. All DMRG calculations were performed
using the ITensor library [16].

In Fig. 4, we present results for very long chains,
demonstrating the linear scaling of SBDMRG. These cal-
culations were at the stretched distance R = 3.6, using
a sliced STO-6G basis with one basis function per slice,
and grid spacing a = 0.2. The inset shows the calculation
time per sweep on a single core of a 2013 3.5GHz Mac
Pro, for a sweep keeping m = 100 states. The calculation
time not only grows very close to linearly in the number of
atoms, it is also quite modest. The largest system, with
1000 atoms, had over 18,000 sliced basis functions, and an
m = 100 sweep took little more than an hour. We slowly
ramped up the number of states kept, with 30 smaller-
m, faster sweeps then three m = 100 sweeps. Subsequent
sweeps up to m = 400 showed that at m = 100, the en-
ergy per atom was in error by only 0.06 mH (DMRG
error only, excluding the finite basis and finite a errors).
The main part of the figure shows the energy per site, in
comparison with QCDMRG STO-6G. The energy results
show the modest difference in completeness of STO-6G
and sliced STO-6G, and also demonstrate that the sliced
DMRG is converged to high accuracy.
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FIG. 4. Energy per atom of N hydrogen atom chains, equally
spaced by a distance R = 3.6 a.u. using standard versus sliced
STO-6G basis sets. Inset: average time per DMRG sweep
with m = 100, demonstrating linear scaling up to N = 1000
atoms.

The sliced basis set approach we have introduced here
is very well suited to DMRG calculations. Coupled with
a compression method for the interactions, the approach
gives linear scaling of computation time with system
length, allowing very long systems to be treated. This
formulation brings DMRG for electronic structure closer
to DMRG for models, and new approaches introduced for
models, such as working directly with an infinite chain
[17, 18], or parallel DMRG which works best for sys-
tems with many sites [19], can probably be adapted to
SBDMRG with little difficulty. We also anticipate that
extending SBDMRG to more complicated molecules will
be reasonably straightforward.
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