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We present a universal expression for the electronic friction as felt by a set of classical nuclear
degrees of freedom (DoF’s) coupled to a manifold of quantum electronic DoF’s; no assumptions
are made regarding the nature of the electronic Hamiltonian and electron-electron repulsions are
allowed. Our derivation is based on a quantum-classical Liouville equation (QCLE) for the coupled
electronic-nuclear motion, followed by an adiabatic approximation whereby electronic transitions are
assumed to equilibrate faster than nuclear movement. The resulting form of friction is completely
general, but does reduce to previously published expressions for the quadratic Hamiltonian (i.e.
Hamiltonians without electronic correlation). At equilibrium, the second fluctuation-dissipation
theorem is satisfied and the frictional matrix is symmetric. To demonstrate the importance of
electron-electron correlation, we study electronic friction within the Anderson-Holstein model, where
a proper treatment of electron-electron interactions shows signatures of a Kondo resonance and a
mean-field treatment is completely inadequate.

Introduction.— The Born-Oppenheimer (BO) approx-
imation is probably the most important framework un-
derlying modern physics and chemistry. According to the
BO approximation, for a system of nuclei and electrons,
we split up the total Hamiltonian into the nuclear kinetic
energy (T̂nuc) and the electronic Hamiltonian Ĥ :

Ĥtot = T̂nuc + Ĥ (1)

Ĥ = T̂e + V̂ee + V̂nn + V̂en (2)

The electronic Hamiltonian Ĥ includes the electronic
kinetic energy T̂e, electron-electron repulsion (V̂ee),
nucleus-nucleus repulsion (V̂nn), and nucleus-electron at-
traction (V̂en). According to the BO approximation, we
diagonalize Ĥ and propagate all nuclear motion along a
single eigenvalue of Ĥ , which is called an adiabatic state;
for a large system in the condensed phase, that special
state is usually chosen to be the ground state.
When applying the BO approximation, one must use

caution because BO approximation is strictly valid only
when nuclear motion is infinitesimally slow, and there
are very well known instances where BO approximation
breaks down: see, e.g., the recent work of Wodtke on
vibrational relaxation and electron transfer at metal sur-
faces [1, 2]. Furthermore, nonadiabatic effects in molec-
ular electronics are known to account for a huge number
of interesting phenomena including heating [3, 4], insta-
bility [5, 6], and inelastic scattering effects [7, 8]. Thus,
for many experiments, theory must go beyond the BO
approximation.
The goal of the present paper is to show that, each and

every time one invokes the BO approximation in the con-
densed phase – provided there is a continuous manifold
of electronic states that relax quickly – there is a sin-
gle, unique Fokker-Planck equation guiding the nuclear
dynamics [9]. In other words, if one is considering a sys-
tem with a manifold of electronic states and one wishes
to treat the nuclei classically, BO dynamics should al-

ways be propagated with a well-defined frictional damp-
ing term and corresponding random force. The univer-
sal expressions for such friction and random force are
presented below and should be applicable to many dy-
namical scenarios: e.g., nuclei scattering off metal sur-
faces [10], atoms vibrating within metal surfaces [11],
molecules relaxing when tethered to photo-excited met-
als [12], and molecules stretching and contracting when
experiencing a current (and sitting between two metal
contacts) [13, 14].
Previous Results.— The notion that the BO approx-

imation can sometimes lead to friction is not new. In
particular, such a friction was identified long ago in the
context of molecular motion at metal surfaces, where a
manifold of electronic states is clearly present and can
lead to so-called “electronic friction.”
One early derivation of electronic friction is due to

Head-Gordon and Tully (HGT) [15, 16], who followed
the dynamics of electrons and nuclei with Ehrenfest dy-
namics. At zero temperature, and without any electron-
electron interactions in the Hamiltonian, they derived the
following functional form for the electronic friction:

γαν = π~
∑

pq

〈φp|∂αV̂SCF |φq〉〈φq |∂ν V̂SCF |φp〉

×δ(ǫF − ǫq)δ(ǫF − ǫp) (3)

Here ǫp and φp are, respectively, the energies and orbitals

that diagonalize V̂SCF , the one-electron self-consistent
potential. ǫF is the Fermi level, and α (or ν) indices nu-
clear DoF’s. To date, this mean-field form of electronic
friction has been applied to many systems using ab ini-
tio electronic structure theory (e.g., DFT) [17–23], and
Langevin dynamics on a metal surface with DFT poten-
tials has become a standard tool.
We emphasize, however, that Eq. 3 is based on the as-

sumption of independent (either free or mean-field) elec-
trons at equilibrium (i.e. with only one metallic lead).
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That being said, this form for electronic friction is con-
sistent with the one-dimensional rates for vibrational re-
laxation previously published by Persson and Hellsing
[24, 25] and others [26, 27]. Several other research groups
have also identified the same effective friction tensor [28]
using different methodologies, some using influence func-
tionals [29] and some using non-equilibrium Green’s func-
tions (NEGF) [30, 31]. The effects of non-Condon terms
have also been considered [32–34] at finite temperature.

More recently, von Oppen and co-workers have pro-
vided an explicit form for the electronic friction using
a non-equilibrium Green’s function and scattering ma-
trix approach [35] plus an explicit adiabatic expansion
in terms of nuclear velocity. The resulting expression
is valid both in and out of equilibrium, e.g. for a
molecule sitting between two metals with a current run-
ning through it. However, again one must assume either
a quadratic Hamiltonian without electron-electron repul-
sion [35] or a mean-field electronic Hamiltonian [36]. (In
a forthcoming article, we will show that the von Oppen
and HGT expressions are identical at equilibrium [37].)

In the end, many distinct approaches for electronic
friction can be found in the literature, most assuming
electrons at equilibrium and almost all assuming non-
interacting electrons. However, for a realistic descrip-
tion of molecular electronic structure, even if we ignore
the effects of an external voltage, it is well-known that
one cannot waive away electron-electron interactions [38].
Despite decades of work on electronic friction, we believe
the most general expression for electronic friction (that
includes electron-electron correlation) arguably still be-
longs to Suhl and co-workers [39]. In Ref. [39], the au-
thors conjectured (without proof) a form for electronic
friction that does actually include electron-electron cor-
relation (see below). A few years ago, Daligault and
Mozyrsky [40] successfully derived Suhl’s conjecture at
equilibrium with a proper random force for the first time,
although they did not investigate electron-electron inter-
actions explicitly. Most importantly, we emphasize that
Refs. [39, 40] are limited to an electronic system in equi-
librium.

Outline.— Given (i) how many important effects break
the BO approximation, (ii) how little attention has been
paid to the effects of electron-electron correlation on the
friction tensor [41–43], and (iii) how many experiments
routinely apply voltages to metals with molecules nearby,
the goal of the present letter is to derive one universal ex-
pression for electronic friction (with a random force) that
is valid both with and without electron-electron interac-
tions and in and out of equilibrium. We will also show
that this universal friction reduces to the HGT model for
the case of a quadratic Hamiltonian (i.e. free electrons) at
equilibrium. At equilibrium, our final expression matches
Suhl’s expression [39, 40] and can be understood easily
through the lens of linear response and correlation func-
tions. However, we emphasize that, in contrast with Refs.

[39, 40], our derived Fokker-Planck equation is valid out
of equilibrium so that the effects of non-equilibrium ini-
tial conditions can be analyzed. We will show that the
second fluctuation-dissipation theorem is satisfied only at
equilibrium.

Lastly, to demonstrate just why electron-electron in-
teractions are so important for nonadiabatic effects, we
will study the electronic friction tensor for the Anderson-
Holstein model in the limit of reasonably large U . Here,
we will show that a mean-field treatment of electron-
electron interactions (as in Eq. 3) can yield a quali-
tatively incorrect picture of electronic friction. Given
the current push to extend correlated electronic structure
methods (beyond mean-field theory) to extended systems
[44, 45], the present letter should be immediately useful
for describing coupled nuclear-electron motion in the con-
densed phase.

Theory.— Consider the very general Hamiltonian in
Eqs. 1-2 and let us make a temperature-dependent
BO approximation, whereby we assume that the nuclei
are propagated along a Boltzmann average of the Born-
Oppenheimer adiabatic surfaces:

Fα = −tre
(

∂αĤρ̂ss
)

(4)

Here, ρ̂ss is a steady-state electronic density matrix.
At equilibrium and in the limit of zero temperature,
ρ̂ss = |g〉 〈g| and the force Fα is simply the ground-state
force, which is the more standard BO approximation. tre
implies tracing over all electronic DoF’s.

As shown in the Supplemental Material (SM, Sec. I),
starting with the quantum-classical Liouville equation
(QCLE) [46, 47] and assuming that electronic motion
is much faster than nuclear motion, we derive a Fokker-
Planck equation for the nuclear motion in the same spirit
as a Mori-Zwanzig projection [48–53]. We denote the
nuclear phase space density as A(R,P). The explicit
Fokker-Planck equation reads:

∂tA = −
∑

α

Pα

mα
∂αA−

∑

α

Fα
∂A
∂Pα

+
∑

αν

γαν
∂

∂Pα
(
Pν

mν
A) +

∑

αν

D̄S
αν

∂2A
∂Pα∂Pν

(5)

Thus, all BO trajectories should be Langevin dynamics
with an electronic friction and a random force:

−mαR̈α = −Fα +
∑

ν

γανṘν − ζα (6)

The electronic friction has the following simple form
in the time domain (expressed in terms of correlation
functions)

γαν = −
∫ ∞

0

dt tre

(

∂αĤe−iĤt/~∂ν ρ̂sse
iĤt/~

)

(7)
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or the following form in the energy domain (expressed in
terms of Greens functions)

γαν = −~

∫ ∞

−∞

dǫ

2π
tre

(

∂αĤĜR(ǫ)∂ν ρ̂ssĜ
A(ǫ)

)

(8)

Here we have defined the many-body (as opposed to
one-body) retarded and advanced Green’s functions
ĜR/A(ǫ) = (ǫ− Ĥ ± iη)−1. These expressions prove that
the friction must always be real, γαν = γ†

αν .
For the random force, at steady state and in the Marko-

vian limit, we find:

D̄S
αν =

1

2

∫ ∞

0

dt tre
(

eiĤt/~δF̂αe
−iĤt/~(δF̂ν ρ̂ss + ρ̂ssδF̂ν)

)

δF̂α ≡ −∂αĤ + tre(∂αĤρ̂ss) (9)

so that

1

2
(〈ζα(t)ζν(t′)〉+ 〈ζν(t)ζα(t′)〉) ≡ D̄S

ανδ(t− t′) (10)

Note D̄S
αν is always real and symmetric. Here, we assume

that the electronic Hamiltonian Ĥ is real-valued.
Eqs. 7-10 are completely general: they express the

friction and random force that correspond to the BO ap-
proximation, in or out of equilibrium. Note that Eqs. 7-9
require taking a full electronic trace, whereas Eq. 3 is ex-
pressed in terms of single electronic orbitals. In the SM,
we prove that Eq. 7 in fact reduces to Tully’s expression
(Eq. 3) at equilibrium if there are no electron-electron
interactions. At this point, there is no simple relationship
between γαν and D̄S

αν .
Equilibrium, the second fluctuation-dissipation theo-

rem and the symmetry of the friction.— At equilib-
rium, the steady state electronic density matrix is ρ̂ss =

e−Ĥ/kBT /Z, where Z is the corresponding normalization

factor or partition function: Z = tre(e
−Ĥ/kBT ). In the

SM (Sec. II), we show that:

γαν =
1

kBT
D̄S

αν (11)

Thus, the second fluctuation-dissipation theorem is
satisfied at equiliibrium. Since D̄S

αν is symmetric, γαν
is also symmetric along α and ν at equilibrium.
Anderson-Holstein model.— To establish the impor-

tance of electron-electron interactions, we will now cal-
culate the electronic friction for the Anderson-Holstein
(AH) model,

ĤAH = ĤA + Ĥosc (12)

ĤA = E(x)
∑

σ

d̂+σ d̂σ + Un̂↑n̂↓ +
∑

kσ

ǫk ĉ
+

kσ ĉkσ

+
∑

kσ

Vk(d̂
+
σ ĉkσ + ĉ+kσ d̂σ) (13)

Ĥosc =
1

2
~ω(x2 + p2) (14)

Physically, the AH model represents an electronic im-
purity d sitting near a metal surface and coupled to a
vibrating oscillator (x). The impurity can filled with an
electron of up or down spin, and so σ =↑, ↓ indicates spin.
The oscillator is a vibrational degree of freedom and feels
a different force depending on the occupation of the im-
purity, E(x) ≡ Ed +

√
2gx. Note we have defined x and

p to be in dimensionless units.

To understand how the motion of the oscillator is per-
turbed by the fluctuating charge of the impurity, we will
calculate the electronic friction. Of course, to apply Eq.
7, we must diagonalize ĤA, which will be done via a
numerical renormalization group (NRG) calculation [54].
We take the wide band approximation, such that the hy-
bridization function Γ ≡ 2π

∑

k V
2
k δ(ǫ − ǫk) is assumed

to be independent of energy. We leave all details of the
calculation to the SM (Sec. III and IV), and show results
below.

In Fig. 1(a), we compare the electronic friction as cal-
culated from NRG versus the electronic friction as cal-
culated with mean-field theory (MFT), Eq. 3, which is
commonly used to treat the Anderson model [36]. We
study the case of a large repulsion U. Whereas NRG pre-
dicts two peaks in the electronic friction – where there
is a resonance of electron attachment/detachment with
the Fermi level of the metal ǫF (i.e. Ed +

√
2gx = 0 and

Ed +
√
2gx + U = 0, where we have set ǫF = 0)– MFT

predicts only a very broad plateau in friction. We have
attempted to reconstruct these two peaks by manipulat-
ing the multiple (broken-symmetry) mean-field solutions
of the Anderson-Holstein model, but we have so far been
unable to qualitatively match the correct answer.
Beyond the formation of two peaks, even more interest-

ing feature arises from NRG at still lower temperatures,
where Kondo physics now shows a signature. In Fig.
1(b), we now show that, below T = 1 × 10−4, the elec-
tronic friction exhibits two additional peaks for a total of
four peaks. Previously, in Ref. [42], Plihal and Langreth
argued that such new peaks might arise from Kondo res-
onances. In other words, we might expect to find peaks
in electronic friction at those positions in space for which
the Kondo temperature is equal to the system temper-
ature. Here, we define the Kondo temperature to be:
TK(x) = D exp(−2π|E(x)||E(x) + U |/U/Γ), where D is
the bandwidth. Thus, for Fig. 1(c), we plot both TK(x)
and the actual T (x), i.e. the temperature at which one
finds (with NRG) a peak in friction at position x. Note
that, as the data shows, the relevant Kondo temperature
TK is close to the physical temperature T , though the
agreement is not perfect.

Let us now establish, however, that Ref. [42] (which
is based on the non-crossing approximation (NCA) and
the case of infinite U) may not be entirely applicable for
our data. First, in contrast with Ref. [42], we observe
that the width of the frictional Kondo peak does not de-
crease with the temperature. Second, again in contrast
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FIG. 1: (a) Electronic friction as function of position x
according to both NRG and MFT [36, 55] calculations

at temperature T=0.005. Note that MFT fails to
recover two peaks in the friction. (b) Electronic friction
according to NRG at low temperature; note that the
two peaks in friction become four peaks in friction at
low temperature. (c)The Kondo temperature TK(x) as
a function of position and the physical temperature
T (x) for which find a peak in friction at position x.

Note that these two temperatures are in rough
agreement, as predicted by Langreth [42]. (d) The

height of the Kondo peak γK as a function of
temperature; note that these peaks decrease
exponentially and vanish at zero Kelvin, in

disagreement with Ref. [42]. Other parameters U = 0.1,
Γ = 0.01, Ed = −0.05, g = 0.0075, bandwidth D = 1.

We have set kB = ~ = 1.

with Ref. [42], we find that the frictional peaks associ-
ated with a Kondo resonance disappear as the tempera-
ture decreases to zero (rather than increase). The height
of these peaks is plotted in Fig. 1(d) and appears to
decrease exponentially with temperature. Future pen-
cil and paper work will be required to understand these
features.

Conclusions.— We have derived a universal expression
for the electronic friction as experienced by a set of clas-
sical nuclear particles coupled to a manifold of quantum
mechanical electronic DoF’s. The key equations are Eqs.
7, 8 and 9. The derivation is simple and, in the same
spirit as a Mori-Zwanzig projection: Assuming all dy-
namics follow the quantum-classical Liouville equation,
we simply make an adiabatic approximation and isolate
fluctuations around a slow variable. Our final expression
is quite general, insofar as it applies in/out of equilib-
rium and with an arbitrary electronic Hamiltonian; at
equilibrium, our work validates the Suhl’s “bootstrap”
conjecture [39].

Looking forward, Eq. 7 is demanding to apply because,

without any further approximations, these equations re-
quire the full diagonalization the electronic Hamiltonian
in terms of the many-body electronic states (much like
the Meir-Wingreen formula [56]). However, using nu-
merical renormalization group (NRG) theory, we have
now shown how to calculate electronic friction tensors
exactly for small model problems. Thus, extending the
work of von Oppen et al [35], one can now study model
Hamiltonians and learn how nuclear motion near metal
surfaces will be effected by electron-electron correlation,
either with or without a current through the molecule.
For example, in the present letter, we have studied the
Anderson-Holstein model and shown that the usual elec-
tronic friction expression (with mean-field theory) yields
qualitatively wrong features; when we account for elec-
tronic friction, we find multiple peaks, including two as-
sociated with Kondo physics. Beyond model problems,
even if we cannot use NRG to diagonalize the Hamil-
tonian, there are currently several research groups that
are seeking to calculate approximate energies for ex-
tended systems beyond mean-field theory (MFT). For
instance, within the condensed matter world, there is
currently a big push to calculate correlated electron at-
tachment/detachment energies with GW [57] and optical
excitations with the Bethe-Salper Equation, all for peri-
odic systems [45, 58]. Furthermore, within the chemistry
world, there has been recent work to calculate ground
state coupled-cluster (CC) and excited state equation of
motion CC energies for periodic systems [44, 59]. All of
these methods can be used to calculate electronic friction
through Eq. 8 going beyond MFT and thus improve our
understanding of nuclear motion in the condensed phase.

Finally, one pressing question remains regarding the
validity of electronic friction: just like the BO approx-
imation, the adiabatic approximation that we make (in
the SM) to move from Eq. 38 to Eq. 39 is uncontrolled
and without a unique small parameter. On the one hand,
Tully has argued that electronic friction fails for NO scat-
tering off of gold [60]. On the other hand, while one would
certainly expect electronic friction to fail in the nonadia-
batic Marcus electron transfer regime, in fact we recently
showed [61] that, with just a little bit of external nu-
clear friction, electronic friction recovers Marcus theory.
From Ref. [61], the only lesson we have so far learned
is that Langevin dynamics with electronic friction will
fail if truly excited state dynamics appear. In this case,
one possible path forward is to include memory effects
with a non-Markovian Fokker-Planck equation [9] (see
the SM); another approach is to employ surface hopping
techniques that can include frictional effects [62–64]. In
the future, it will be essential to further investigate when
and how such excited state dynamics occurs, and given
how important are electronic-electronic interactions for
identifying curve crossings, the present paper takes an
important step forward by unambiguously identifying the
correct, universal electronic friction tensor accompanying
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all Born-Oppenheimer dynamics.
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