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We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons
in dense plasmas. To this end, we analyze the evolution with density and temperature of the
momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to
determine the boundaries of the crossover region in the temperature-density plane and to shed light
on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of
electrons on electronic collisions across the crossover region, and 3) to explain how the concept of
Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature.

Dense plasmas are characterized by the coexistence of
significant quantum, thermal and Coulomb coupling ef-
fects that push the classic descriptions of plasmas and
condensed matter outside their limits of validity [1, 2].
In addition, by their intermediate nature, dense plasmas
exhibit sharp transitions and smooth crossovers in their
properties. A notable example is that of ionic proper-
ties. As the temperature is lowered and the density is
increased from the hot and dilute plasma regime, the
ions show evolution from a nearly collisionless gaseous
regime, continuously through an increasingly correlated
liquid-like regime, on to solidification [3]. Much is known
about these regimes, mainly thanks to the ability to per-
form first-principle simulations of classical systems. Re-
markably, a similar depiction of the properties of conduc-
tion electrons from the classical regime at high enough
temperatures and low enough densities down to the fully
Fermi degenerate regime at low temperatures and high
densities, does not exist. An improved description of the
crossover between the two regimes is desirable to advance
our understanding and modeling capability of conditions
that are routinely created in laboratory experiments [4–
6], are traversed in inertial confinement fusion (ICF) ex-
periments [7], and are common in stars and planets [8].

For simplicity, let us consider an infinite gas of elec-
trons (number density n, charge −e, mass m) in a
uniform neutralizing background and in thermal equi-
librium at temperature T . The parameter commonly
used to demarcate the passage from the classical to the
Fermi degenerate regimes is the degenaracy parameter
Θ = kBT/EF , where EF = p2F /2m is the Fermi energy,
pF = h̄kF is the Fermi momentum with kF = (3π2n)1/3.
Traditional plasma physics applies at high enough T and
low enough n such that Θ≫ 1: electrons behave essen-
tially like a classical, weakly coupled gas of point particles
undergoing small-angle binary collisions; this regime is
well described by the classical Fokker-Planck (FP) equa-
tion [9]. By contrast, at low enough T and high enough
n such that Θ≪ 1, electrons are in a state of complete
Fermi degeneracy: this is the regime of Landau’s theory
of normal Fermi liquids that describes the gas of (possi-
bly strongly interacting) electrons as a dilute collection of
elementary excitations, or quasiparticles, whose dynam-

ics is governed the quantum Boltzmann equation [10].
Striking differences exist between the dynamical prop-
erties of these two regimes. For instance, the transport
coefficients show vastly different temperature dependence
[11, 12]: the shear-viscosity coefficient η∝ T 5/2 for Θ≫1
but is ∝ T−2 for Θ≪ 1; similarly the thermal conduc-
tivity coefficient λ ∝ T 5/2 for Θ ≫ 1 but is ∝ T−1 for
Θ ≪ 1 [13]. The Pauli exclusion principle, which im-
plies that, for Θ≪ 1, only a small fraction ∝ Θ of elec-
trons around the Fermi surface are free to scatter with
others, is responsible for these changes. Another usu-
ally disregarded but significant consequence is the depen-
dence on the effective electron-electron interactionW . In
the classical regime, η and λ are inversely proportional
to the Coulomb logarithm lnΛ =

∫
∞

0
dqq3σ(q), where

σ(q) ∝ |W (q)|2 is the differential binary collision cross
section and q the momentum transfer [14]. By contrast,
in the Fermi liquid regime [12], η and λ are inversely pro-

portional to
∫ 2kF

0
dqσ(q), and this independently of the

range of W . The disappearance of the Coulomb loga-
rithm at small Θ suggests the breakdown of the graz-
ing collisions approximation that underlies plasma the-
ory. Incidentally, the quantum FP equation [15], which
extends the classical equation by including the Pauli prin-
ciple while keeping the small-angle collision approxima-
tion, predicts λ∝ T−2 [16], in sharp disagreement with
the above-mentioned T−1 scaling. Finally, whereas pre-
vious results ignore the effect of particle indistinguisha-
bility, it is known that exchange processes greatly reduce
the scattering between parallel-spin electrons relative to
that from antiparalllel-spin electrons at Θ≪ 1 [17, 18],
while being insignificant in the classical regime.
These results raise a number of open questions, includ-

ing: What are the boundaries of the gap separating the
classical plasma and Fermi liquid regimes? When does
exchange become negligible? How does the Coulomb log-
arithm emerge from the quantum regime? When does the
small-angle scattering approximation underlying plasma
physics break down? These questions are important, not
only from a basic standpoint to advance our fundamental
understanding of dense plasmas, but also from a practi-
cal standpoint to guide the development of needed first-
principle simulations that can access truly dynamical and
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non-equilibrium regimes [19–21], while in current simu-
lations electrons are not dynamical [22, 23]. An obvious
approach to shed light on these questions is to calculate
η and λ from the quantum Boltzmann equation across
the gap. However a practical solution seems elusive due
to the complexity of the collision operator. In this work,
we instead consider a physical quantity, viz., the elec-
tron momentum lifetime, that is accessible to analytical
treatment and numerical evaluation across the gap. We
continue considering the electron gas model, which un-
derlies numerous calculations in the field [1, 2, 24].
The momentum lifetime τk is defined as the inverse col-

lision rate of an extra electron with momentum p= h̄k,
which, at some time t = 0, is suddenly introduced into
an electron gas in thermal equilibrium and then scat-
ters against its constituents [25]. We assume that the
most relevant scattering process is the binary collision
into a state of momentum h̄(k+ q) with an electron
of initial momentum h̄k′, and that the colliding elec-
trons interact through the static, exponentially screened

Coulomb potential W (q) = e2

ǫ0
1

q2+k2
sc

≡ e2

ǫ0
v(q) [32]. Here

ksc=kDH

√
F−1/2/F1/2, where Fν(µ/kBT ) is the Fermi

function [26] and µ the chemical potential, is the in-
verse Thomas-Fermi screening length that varies from
2
√

kF /πaB at T = 0 to the inverse Debye-Hückel length

kDH =
√

e2n/ǫ0kBT at high T (see Fig. 1). By applying
the Fermi golden rule to calculate the transition probabil-
ity of a collision and summing over all allowed collisions in
accordance to the Pauli principle and energy-momentum
conservation [10, 18], we find 1/τk=1/τdk−1/τexk , where

1

τ d
k

= 2
2πe4

h̄ǫ20

1

V 2

∑

k′,q

|v(q)|2 (1)

× nk′(1− nk+q)(1−nk′−q)δ(ǫk+q+ǫk′−q−ǫk−ǫk′)

1

τ ex
k

=
2πe4

h̄ǫ20

1

V 2

∑

k′,q

v(| − q|)v(|q + k− k′|) (2)

× nk′(1−nk+q)(1− nk′−q)δ(ǫk+q+ǫk′−q−ǫk−ǫk′) ,

with ǫk = h̄2
k2/2m and nk = 1/(1 + e−(µ−ǫk)/kBT ). For

convenience, we express 1/τk as a sum of a “direct” term
1/τ d

k , which treats electrons as distinguishable particles,
and an “exchange” term 1/τ ex

k , which incorporates the
effects of indistinguishability.
Direct term. We find it useful to express Eq.(1) as

1

τ d
k

= ωpk
3
sc

∫
∞

0

dq |v(q)|2 Gk/kF ,Θ (q/kF ) , (3)

where ωp=
√

e2n/ǫ0m is the plasma frequency, and

Gx,Θ(y)=
9π

16
√
2
Θ

5

2

( F1/2(µ̃/Θ)

F−1/2(µ̃/Θ)

)3

2

y

∫ y/2+x

y/2−x

du (4)

× 1

1− e
2y

Θ
u

1

1 + e−
2y

Θ
ue

1

Θ
(µ̃−x)

ln
1 + e

1

Θ [µ̃−(u+y/2)2]

1 + e
1

Θ [µ̃−(−u+y/2)2]
,
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FIG. 1: (color online) Components of the integrand (3)
for various Θ. The black lines show |v(q)|2 for n = 10m

cm−3 with m = 22, 24, 26, 28, 30. The red lines show
GkΘ/kF ,Θ(q/kF ) (full) rescaled to its maximum value (see Fig.
2) and the third-order Taylor expansion (dashed lines). Up-
per right panel: inverse screening length ksc/kF vs Θ for the
same densities as above. The dashed line shows δq(Θ)/kF .

with µ̃(Θ) = µ/EF . Equation (3) gives the relaxation
rate as the sum over q= |q| of the product of the differ-
ential cross section ∝ |v(q)|2, which selects the dominant
scattering processes, times a universal factorG (dropping
parameters), which measures the total number of colli-
sions with momentum transfer h̄q that can occur in ac-
cordance with the Pauli principle and energy-momentum
conservation. As illustrated in Fig. 1, by looking at how
these two quantities vary and overlap with n and T , we
can identify different physical regimes.

We first describe some features of G, giving special
emphasis to its small-q behavior because of its central
role in our later discussion. For definiteness, in Figs. 1
and 2, we set the initial momentum p to the relevant
value pΘ = h̄kΘ = pF

√

1 + Θ/2, which varies from the
Fermi momentum pF at Θ≪ 1 to the thermal momen-
tum pth=

√
mkBT in the classical limit. With our choice

of definitions, the analysis is simplified since G depends
parametrically on Θ only [27]; thus, say by varying n
at constant Θ, only |v(q)|2 changes along with ksc. As
shown in Fig. 2, for Θ ≪ 1, GkΘ/kF ,Θ(q/kF ) is essen-
tially constant between q= 0 and 2kF at a value ∝ T 2,
with a steep increase at q = 0 (see inset) over a range
δqΘ/kF ∼

√
Θ, and a steep decay at q ≃ 2kF , the max-

imum momentum transfer that scattering electrons at
the Fermi surface can undergo. The change of behav-
ior around δqΘ results from a change in the phase-space
restrictions imposed by the energy-momentum conserva-
tion and the Pauli principle, which constrain both k′ and
k′−q before and after the collision with the extra elec-
tron to lie within a shell of thickness ∼kF

√
Θ around the

Fermi surface. If k′ lies in the shell then k′−q is automati-
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FIG. 2: (color online) Factor GkΘ/kF ,Θ(q/kF ) (full lines)
across degeneracy regimes; results for small Θ are magnified
in the inset. For ease of comparison, all factors are rescaled by
their maximum value Gmax given in the legend. The dashed
lines show the third-order Taylor expansion G(3).

cally in the shell only if the momentum transfer is q<δqΘ,
but it must be further constrained to lie in the shell if
q > δqΘ. As Θ increases, the function G broadens along
with the Fermi surface, and δqΘ increases. We note that
the expansion GkΘ/kF ,Θ(q/kF )≃G(3)(Θ, q)= a1q + a3q

3

shown by the dashed lines in Figs. 1-2 is an excellent ap-
proximation for q<δqΘ≡

√

−a1/3a3≃kF
√

0.45 + 4Θ/3
[28], with δqΘ set to the location of the maximum of G(3).
We then discuss the consequences on the momentum

lifetime. In the literature on Fermi liquids (FL), the Θ≪
1 limit of Eq.(1) is usually given for k in the vicinity of
the Fermi surface in the form

1

τFLk

=
2m3e4

ǫ20πh̄
7k

(ǫk − µ)2 + (πkBT )
2

1 + e−(ǫk−µ)/kBT

∫ 2kF

0

dq |v (q)|2 . (5)

As said in the introduction, there is no Coulomb log-
arithm. The panel Θ = 0.01 in Fig. 1 gives a graphical
explanation of this result: for all densities, ksc≫δqΘ, and
the overlap between G and |v|2 occurs predominantly in
the constant part of G, which factorizes out of Eq.(3)
to give Eq.(5). By contrast, in the non-degenerate limit
Θ≫1, µ/kBT≪−1 and Eq.(3) simplifies to

1

τclk
=

4πnme4

h̄3k

∫
∞

0

dq q |v(q)|2
[

erf

(
k + q√
ΘkF

)

+erf

(
k − q√
ΘkF

)]

.(6)

However, as illustrated in Fig. 1 for Θ = 10, ksc ≪ δqΘ
in this limit and |v|2 overlaps entirely with the small-q
expansion G(3) such that the direct term reduces to

1

τ FP
k

=A1

∫ δqΘ

0

dqq|v(q)|2 +A3

∫ δqΘ

0

dqq3|v(q)|2
︸ ︷︷ ︸

lnΛ

. (7)

with A1,3(n,Θ) = ωp(n)k
3
sc(n,Θ)a1,3(n,Θ); we asso-

ciate this expression to the FP description since it re-
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FIG. 3: Regimes of electronic collisions identified in this study
displayed in a plot of temperature versus density. The lines
and colors are defined in the text (page 4). For reference, the
dots show the typical positions of ICF burning plasmas (red)
and of the cores of astrophysical objects, including the Sun
(yellow), white dwarfs before core solidification (cyan), brown
dwarfs (brown), Jupiter (green), Earth (blue).

tains the small-angle collisions only. The traditional
Coulomb logarithm lnΛ emerges from the third-order
term a3q

3 with the upper momentum transfer cutoff
δqΘ ≃ kF

√

4Θ/3 = 1.63/λdB, where λdB = h̄/
√
mkBT

is the thermal de Broglie wavelength, which is consistent
with the ad-hoc cutoff δqΘ≃1/λdB prescribed in the lit-
erature. One may find surprising that, unlike the usual
transport coefficients of classical plasma theory, an extra
term ∝

∫
dqq|v(q)|2 also arises in Eq.(7). This is because

in deriving the FP equation by expanding the Boltzmann
collision operator in powers of q [11], the leading term is
∝ q3 since the lower orders, including q1, cancel when
the scattering-in and -out processes that change the dis-
tribution f(p) of electrons are summed; by contrast, this
cancellation does not occur here since the momentum
lifetime includes only the processes that scatter a sin-
gle test electron out its initial momentum p. The results
shown in Fig.(1) for Θ≤1 illustrate that the FP behavior
underlying classical plasma theory is not limited to non-
degenerate plasmas but applies whenever ksc and δqΘ are
such that |v|2 and G(3) fully overlap. The temperature
at which this first occurs depends on the density along
with ksc. For instance, at Θ=0.1, |v|2 and G still over-
lap predominantly in the range q > δqΘ for all densities
n shown except 1030 cm−3; at Θ=1 this is the case for
n<1026 cm−3 only; at Θ=10, |v|2 and G(3) fully overlap
for all n.

By comparing numerically Eqs.(3)-(7) for k = kΘ, we
identify the different regimes displayed in the T-n dia-
gram shown in Fig. 3. The red area corresponds to con-
ditions where |(τclk −τ d

k )/τ
d
k | ≤ 0.01 and is identified as
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FIG. 4: (color online) 1/τk (dashed line) and 1/τd
k (full line)

in units of ωp(n) vs initial momentum k/kF for a range of Θ
and n = 10m cm−3 with m = 22 (red), 24 (green), 26 (blue),
28 (magenta). The vertical dashed lines indicate k=kΘ.

the “classical FP” region where classical plasma physics
applies; for reference, since the previous criterion is rea-
sonable but arbitrary, the red lines delimit regions above
which |(τclk −τ d

k )/τ
d
k | ≤ 0.1 and 2. The blue area corre-

sponds to conditions where |(τFLk −τ d
k )/τ

d
k | ≤ 0.05, and

is identified as the regime where the Fermi liquid theory
applies. The crossover region that we set out to delineate
lies between the red and blue areas. There, the green area
corresponds to conditions where |(τFPk −τ d

k )/τ d
k | ≤ 0.01

(dark green) and ≤0.1 (light green), and is identified as
the “quantum FP” region where the small-angle collision
approximation remains valid but degeneracy effects are
non-negligible. In the white area, short-range collisions,
degeneracy and thermal effects are non-negligible.
Other features of the crossover can be seen in Fig. 4,

which shows 1/τ d
k (full lines) for 0< k ≤

√
2kΘ, 10

22 ≤
n≤ 1030 cm−3 and 0.01≤Θ≤ 100. Briefly, at small Θ,
we see the effect of the broadening of the Fermi surface:
collision channels that are inhibited by the Pauli principle
at Θ=0.1 when k<kF , are opened at Θ=0.25. The non-
degenerate limit (6) overlaps (not shown) with the exact
expression (3) at Θ≥10 only.
Exchange term. Figure 4 compares the total colli-

sion rate 1/τk (dashed lines) with the direct contribu-
tion 1/τ d

k (full lines) for 1022 ≤ n ≤ 1028 cm−3 and
0.01 ≤ Θ ≤ 100. Exchange processes always reduce the
scattering rate and there are non-trivial variations with
n and Θ. For instance, with n=1028 cm−2 (purple lines),

R≡ (1/τ ex
kΘ

)/(1/τ d
kΘ

) is ≃ 10% for 0≤Θ≤ 0.5, = 7% at
Θ= 1 and is < 0.5% above Θ= 10. By contrast, at the
lower densities, exchange remains non-negligible over a
wider range of conditions; e.g., with n=1022 cm−2 (red
lines), R ≃ 47% for Θ ≪ 1 (note that Eqs(1-2) imply
R ≤ 50% for all n and T ), =45% at Θ=1 and is <10%
only above Θ=10. These variations are summarized in
Fig. 3, where the black lines show the conditions at which
R=1%, 10%, 25% and 40%; these lines stop abruptly at
a density (see vertical black lines) above which the cri-
terion is never met. These variations reflect the type of
collisions that predominate, which depends on the range
of the electronic interactions, i.e. on the magnitude of
ksc. At small enough ksc, collisions occur mostly between
distant electrons and particle exchange is small. By con-
trast, at large enough ksc, interactions are short-ranged
and more prompt to particle exchange.

In summary, by calculating the evolution with den-
sity and temperature of the momentum lifetime of a test
electron in a dense electron gas, we have explored the
crossover from classical plasma to Fermi liquid behavior
of electronic collisions not only in light of the degener-
acy parameter Θ, which gives information of kinematic
nature (i.e., related to the set of allowed collision pro-
cesses), but also considering the range 1/ksc of the ef-
fective electronic interactions, which gives information
of kinetic nature by determining the dominant scattering
processes. This allowed us to determine the boundaries of
the crossover, to understand the emergence and extent of
validity beyond the classical plasma regime of the notion
of Coulomb logarithm, and to estimate the contribution
of exchange processes. Our main findings are summa-
rized in the T-n diagram of Fig. 3. Our calculations rely
on several approximations that are suitable when the in-
teractions between electrons represent a relatively small

perturbation, i.e. when the ratio Γ = e2

4πǫ0a
1√

(kBT )2+E2

F

(a=(3/4πn)1/3 ) of the average potential energy per elec-
tron to the average kinetic energy is smaller than unity
[30]. In Fig. 3, the dashed lines demarcate the regions
above which Γ ≤ 1 and 0.1, and show that our calcu-
lations are likely to be somewhat in error in the bottom
left corner of the T-n diagram. The inclusion of Coulomb
coupling effects is challenging but could be approached
with sophisticated techniques like the GW method [31].
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Zastrau, J. Hastings, L.B. Fletcher, and S.H. Glenzer,
Phys. Rev. Lett. 115, 115001 (2015).

[5] A.B. Zylstra, J.A. Frenje, P.E. Grabowski, C.K. Li, G.W.
Collins, P. Fitzsimmons, S. Glenzer, F. Graziani, S.B.
Hansen, S.X. Hu, M. G. Johnson, P. Keiter, H. Reynolds,
J.R. Rygg, F. H. Seguin, and R.D. Petrasso, Phys. Rev.
Lett. 114, 215002 (2015).

[6] B.I. Cho, T. Ogitsu, K. Engelhorn, A.A. Correa, Y. Ping,
J.W. Lee, L.J. Bae, D. Prendergast, R.W. Falcone, P.A.
Heimann, Scientific Reports 6, 18843 (2016).

[7] A. C. Hayes, G. Jungman, A. E. Schulz, M. Boswell,
M. M. Fowler, G. Grim, A. Klein, R. S. Rundberg, J.
B. Wilhelmy, D. Wilson, C. Cerjan, D. Schneider, S. M.
Sepke, A. Tonchev and C. Yeamans, Phys. Plasmas 22,
082703 (2015).

[8] H.M. Van Horn, Science 252, 384 (1991).
[9] M.N. Rosenbluth, W.M. MacDonald, and D.L. Judd,

Phys. Rev. 107, 1 (1957).
[10] D. Pines and P. Nozières The Theory of Quantum Liq-

uids, Vol.1 (Benjamin Inc., New York, N. Y., 1966).
[11] L.P. Landau, E.M. Lifshitz and L.P. Pitaevskii, Physical

Kinetics, Vol. 10 (Elsevier Ltd, 1981).
[12] A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys.

22, 329 (1959).
[13] The complete expressions are [11, 12]

η =















5
√
πm

8q4
(kBT )

5/2

ln Λ
, Θ≪1

16

45

h̄3p5F
(4πm2q2)2

(kBT )
−2

〈

W (k) sin4(θ/2) sin2(φ)/ cos(θ/2)
〉 , Θ≫1

κ =















75kB
32

√
mπq4

(kBT )
−5/2

ln Λ
, Θ≪1

4π2

3

kB(h̄pF )
3

m4(4πq2)2
(kBT )−1

〈

W (k) sin2(θ/2)/ cos(θ/2)
〉 , Θ≫1

with k = 2kF sin(θ/2) sin(φ/2) and 〈.〉 = 1
4π

∫

4π
dΩ an

average over solid angles Ω.
[14] With the Coulomb interaction W (q)∝ q−2, one recovers

the standard expression lnΛ=
∫

dq/q.
[15] J. Daligault, Phys. Plasmas 23, 032706 (2016).

[16] M. Lampe, Phys. Rev. 170, 306 (1968); 174, 276 (1968).
[17] D.R. Penn, Phys. Rev. B 22, 2677 (1980).
[18] Z. Qian and G. Vignale, Phys. Rev. B 71, 075112 (2005).
[19] Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M.

Reid, Y. Y. Tsui, V. Recoules, and A. Ng, Phys. Rev.

Lett. 110, 135001 (2013).
[20] J. Clérouin, G. Robert, P. Arnault, C.Ticknor, J.D.

Kress, and L.A. Collins Phys. Rev. E, 91 011101(R)
(2015).

[21] A.D. Baczewski, L. Shulenburger, M.P. Desjarlais, S.B.
Hansen, and R.J. Magyar, Phys. Rev. Lett. 116, 115004
(2016).

[22] Frontiers and Challenges in Warm Dense Matter, Series:
Lecture Notes in Computational Science and Engineer-
ing, 96, edited by F. Graziani, M.P. Desjarlais, R. Red-
mer, and S.B. Trickey (Springer 2014).

[23] T. Sjsotrom and J. Daligault, Phys. Rev. Lett. 113,
155006 (2014) and references therein.

[24] T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone,
W.M.C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 117,
156403 (2016).

[25] For the densities considered, relativistic effects are negli-
gible since pF/mc < 1.

[26] Fν(x) =
1

Γ(ν+1)

∫∞

0
dy yν

ey−x+1
.

[27] From n = 2F1/2(µ/kBT )/(2πλ2
dB)

3/2, we find na3 =
3
4π

= 9
32

√
π
Θ3/2F1/2 (µ̃/Θ), which shows that µ̃ and G

are functions of Θ only.
[28] The expansion demands a lengthy calculation; a1,3 will

be given elsewhere; we only give the simple fit δqΘ ≃
kF

√

0.45 + 4Θ/3, which is accurate for Θ values where
the FP model introduced below is valid.

[29] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
P. Flannery, Numerical Recipes (3rd Edition, Cambridge
University Press, 2007).

[30] This definition conveniently varies from the classical
value e2/4πǫ0akBT for Θ≫1 and e2/4πǫ0aEF for Θ≪1.

[31] L. X. Benedict, C. D. Spataru and S. G. Louie, Phys.

Rev. B 66, 085116 (2002).
[32] The calculations could be extended to include dynamical

screening effects. This is not necessary here since we limit
ourselves to momenta p ∼ pΘ that do not have enough
energy to excite a plasmon.


