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A trapped ion transported along a periodic potential is studied as a paradigmatic nanocontact
frictional interface. The combination of the periodic corrugation potential and a harmonic trapping
potential creates a one-dimensional energy landscape with multiple local minima, corresponding to
multistable stick-slip friction. We measure the probabilities of slipping to the various minima for
various corrugations and transport velocities. The observed probabilities show that the multislip
regime can be reached dynamically at smaller corrugations than would be possible statically, and can
be described by an equilibrium Boltzmann model. While a clear microscopic signature of multislip
behavior is observed for the ion motion, the frictional force and dissipation are only weakly affected
by the transition to multistable potentials.

Stick-slip friction is a ubiquitous non-equilibrium dy-
namical process that occurs at the interface between sur-
faces across a wide range of length scales [1–6]. The term
stick-slip describes the system’s response to an applied
shear force: the surfaces slip out of a local minimum
in the interface energy landscape, and stick into a new
lower-energy minimum, releasing heat in the process.

Recent advances in atomic force microscopy (AFM)
have extended the study of stick-slip friction to the
atomic scale, where atom-by-atom slips occur at the in-
terface between a probe tip and a periodic substrate [7–
18]. For a single-atom probe, the number of local min-
ima in the probe-substrate interaction potential is deter-
mined by the ratio of the periodic substrate potential to
the spring constant with which the probe is bound to its
support object. As the load on the probe is increased, or
equivalently, the periodic substrate potential is deepened,
the system transitions from a bistable regime (where the
probe deterministically single-slips from the first mini-
mum to the second) to a multistable regime (where a
probe can stochastically multislip to one of several lo-
cal minima). This has been demonstrated in AFM sim-
ulations [19–22] and experiments [23–25] where single-
slip and multislip events have been clearly differentiated.
However, in the absence of control over dissipation rates
and the microscopic energy landscape, it is difficult to tie
the observations to ab initio friction models.

Following theoretical proposals [26–29], we have re-
cently demonstrated a trapped-ion friction emulator with
extensive control over all microscopic interface parame-
ters [30–32]. In analogy to AFM, the emulator features
a small probe (one or several trapped ions) transported
over a periodic substrate potential created by an opti-
cal standing wave (Figs. 1a,b) [33–35]. To date, we have
used the emulator to study the velocity-dependence of
nanofriction [30], as well as the interplay between super-
lubricity [31, 36–39] and the Aubry transition [32]. These
studies and a recent study of zig-zag ion chains [40] have

focused on the single-slip regime.
In this Letter, we study multislip friction in deep sub-

strate potentials. We observe the ion fluorescence as-
sociated with slip events, from which we directly ex-
tract the temperature- and velocity-dependent probabil-
ities for the ion to localize in one of the available local
minima. We find that at finite rethermalization times
following a slip, the multislip regime can be reached dy-
namically at smaller corrugations than would be possible
statically. We also find that the probabilities agree well
with a simple Boltzmann model, despite the dynamical
nature of the process. Remarkably, the average frictional
energy dissipation Udiss and the maximal static friction
force Fstatic are mostly unaffected by the transition from
the single-slip to the multislip regime, increasing approxi-
mately linearly with the depth of the substrate potential.

The potential energy landscape experienced by the ion
is produced by the combination of an electrostatic har-
monic potential provided by a linear Paul trap [41] and
a sinusoidal optical lattice [30–32, 35]. The potential en-
ergy of the ion at position x is given by the Prandtl-
Tomlinson model [42, 43]:
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The first term is attributed to the harmonic trap at po-
sition x0, corresponding to a spring with constant K =
mω2

0 (m is the mass of the 174Yb+ ion and ω0/(2π) ≈ 360
kHz is the axial vibrational frequency of the harmonic
trap). The second term is due to the AC Stark shift of
the lattice with period a = 185 nm [31]. The number of
local minima in V (x) is determined by the corrugation
parameter η = (ωL

ω0
)2, with ωL the vibrational frequency

at the lattice minima. By adjusting the optical-lattice
amplitude to a maximum of U/h = 40 MHz, we change

ωL =
√

2π2U
ma2 up to 2π×1.1 MHz, and thus tune η in the

range 0 ≤ η ≤ 10. Values of interest include η = 1, 4.604,
and 7.790, which mark the transition to potentials with
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FIG. 1: a) Schematic of the experimental set-up. A 174Yb+

ion is trapped by a linear Paul trap, located 135 µm above
the surface of a lithographic microchip. The chip generates
radial trapping with an RF field and axial trapping with a DC
harmonic potential. An axial optical-lattice standing wave is
produced by 370 nm light, blue-detuned from the 2S1/2 →
2P1/2 atomic transition by 12.6 GHz. Ion fluorescence is col-
lected during laser cooling. b) Stick-slip friction in a periodic
optical potential. As the harmonic trap is translated at speed
v, it drags the ion along the sinusoidal optical-lattice poten-
tial, causing the ion to slip. The excess energy acquired during
a slip is dissipated by continuous laser cooling. c) Combined
harmonic-sinusoidal potential for different values of the corru-
gation parameter η. The potential energy landscape is drawn
just before the slipping point, where the left-most minimum
vanishes and a potential with initially n local minima has
n − 1 available minima to which the ion can slip. Note that
for n = 1, there is no energy barrier and, consequently, no
stick-slip friction.

n = 2, n = 3, and n = 4 local minima, respectively
(Fig. 1c).

The ion is transported by adjusting the potentials of
the trap electrodes so as to translate the harmonic-trap
position x0. Thus, we drive the ion over the optical lattice

at constant average velocity v = dx0

dt , forcing the ion to
slip over lattice maxima (Fig. 1c). During the transport,
the ion is continuously laser cooled via Raman sideband
cooling to a typical temperature of 50 µK (kBT/U in the
range 0.5 to 0.03 for η in the range 0.5 to 10) [35], and
observed via the fluorescence emitted during the cool-
ing process. For a stationary ion, the fluorescence peaks
when its stable minimum becomes an inflection point,
the moment when the ion is closest to the maximum of
the optical-lattice potential [35]. After the ion slips over
a lattice maximum, its fluorescence falls exponentially
while it cools and localizes into a new local minimum.

Initializing the ion in the global potential minimum,
and then transporting through consecutive slip events, we
observe a series of fluoresence peaks; the relative heights
of these peaks differentiate single-slip from multislip be-
havior. For an ion undergoing single-slips, a series of
equally-spaced fluorescence peaks of equal height is ob-
served, as the ion always localizes in the adjacent mini-
mum after every slip event (Fig. 2a). The transition to
the multislip regime manifests itself as fluorescence peaks
of different heights, associated with random localizations
in more distant minima (Fig. 2b,c).

To see why the two slip modes result in different
peak height distributions, we note that the fluores-
cence traces are averaged over multiple repetitions of the
initialization-transport experiment. The more likely an
ion is to slip at a particular time, the higher the associ-
ated averaged fluorescence peak. The ion is initialized in
the global potential minimum; when this minimum van-
ishes due to trap translation, the ion will always slip and
fluoresce. Thus, the first peak f1 is the largest. After this
initial slip, if the ion localizes in the adjacent minimum
(single-slip), then further trap translation by one lattice
period a will cause the ion to slip and fluoresce again,
and we will observe f2 = f1. If it localizes instead in the
next-adjacent minimum (multislip), then a fluorescence
peak will not appear until translation by 2a. A finite
probability of next-adjacent localization will result in a
reduced peak f2 < f1 and a higher peak f3 > f2 (see
Fig. 2b,c).

The relationship between the localization probabilities
{pA, pB , pC} (where pA denotes localization in the adja-
cent minimum, pB the next-adjacent minimum, etc.) and
the peak height distribution {fi} is given by [46]:

pA = f2/f1

pB = −(f2/f1)2 + f3/f1 (2)

pC = (f2/f1)3 − 2f2f3/f
2
1 + f4/f1.

Note that the probability distribution is extracted di-
rectly from the observed peak heights without making
assumptions about the localization process.

By measuring fluorescence patterns like the ones shown
in Fig. 2 for different corrugation parameters η and trans-
port velocities v, we extract localization probabilities
over a range of experimental conditions (Fig. 3). For all
three velocities shown, multislip behavior (second-next
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FIG. 2: Measured ion fluorescence as a function of trap trans-
lation, indicating single-slip vs. multislip behavior. After the
ion is prepared in the global energy minimum, the harmonic
trap is translated at constant velocity across the optical stand-
ing wave. This forces the ion to slip over local potential max-
ima, resulting in fluorescence peaks. The fluorescence traces
are averaged over an exposure time of 300 seconds, corre-
sponding to roughly 1.5× 105 realizations of the experiment.
Error bars are statistical and indicate one standard deviation.
a) Fluorescence trace indicating single-slip behavior for a po-
tential with n = 2 minima (η = 3.2). Fluorescence peaks
are of equal height, indicating that the ion always slips to
the adjacent minimum (lattice period a = 185 nm). There is
a small variation of peak heights due to the finite recooling
time (see text). b,c) Fluorescence traces indicating multi-
slip behavior in a potential with n = 3 and n = 4 minima,
respectively (η = 6.4 and η = 9.6). Fluorescence peaks vary
in height, indicating that an ion can slip into one of multiple
local minima, and therefore may not always slip when a given
minimum disappears. Note the hysteretic delay of the peaks
in these time traces compared to Fig. 2a. This is due to the
greater static friction force Fstatic exerted on the ion by the
optical lattice at higher η. (See Ref. [31] and Fig. 4a.)

neighbor slip probability pB > 0) is observed in the mul-
tistable regime (η > 4.604). This is a consequence of the
underdamping of the system (γc � ω0), which guarantees
that an ion, following a slip, can sample the full potential
landscape before it recools at rate γc = 104 s−1 and lo-
calizes in a minimum. More surprising is the appearance
of multislip events before the corrugation is deep enough
to create multiple static minima (in the region of bistable

FIG. 3: Multislip probabilities vs. corrugation parameter η
for different transport velocities v. Data points are the ex-
tracted slipping probabilities pA (slip to next minimum, red
squares), pB (slip to second-next minimum, blue circles), pC
(slip to third minimum, green diamonds). Velocities are re-
ported as functions of the system’s recooling rate γc and ther-
mal hopping rate γth, the rate at which the ion hops over a
barrier due to its finite temperature (see main text). Error
bars are statistical and indicate one standard deviation. The
multislip regime is distinguished by non-negligible values of
pB . Curves are calculated from a theoretical model. Vertical
dash-dotted lines separate regimes with different numbers of
minima (as in Fig. 1c).

potential η < 4.604, where a third minimum should not
yet exist). This is the case for the two fastest transport
speeds but not for the slowest transport. This can be
readily explained by the change in the energy landscape
during the recooling time γ−1

c : by the time the ion is suf-
ficiently cooled to localize, another potential minimum
may have opened up if v/a >∼ γc. Thus, we find that the
multislip regime can be reached dynamically at smaller
corrugations than would be possible statically.

The experimental data shown in Fig. 3 is overlayed
with a theoretical model that takes into account the sys-
tem’s competing rates (transport rate v/a and recooling
rate γc). Our model’s central assumption is that an ion
is more likely to localize in a lower-energy minimum and
that this effect can be described by a quasi-equilibrium

Boltzmann probability pi ∝ exp(− Vi(τ)
kBT (τ) ). Here, Vi(τ) is

the potential energy of the ith minimum at time τ when
the ion localizes, and T (τ) is the temperature of the ion
at that time. To model its temperature, we note that an
ion has some potential energy V0 at the slipping point.
This is converted into kinetic energy and dissipated expo-
nentially by laser cooling: kBT (τ) = V0 exp(−γcτ). Our
model’s free parameter is the localization time, found to
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be τ = (65± 5) µs by fitting the model to the data.

We note that the dataset with the slowest transport
speed is fitted with lower confidence by the model above
η > 4.604. This discrepancy is the signature of another
dynamical rate of the system, the thermal hopping rate
γth = 103 s−1, observed previously in Refs. [30, 44, 45].
Thermal hopping across a barrier due to the ion’s finite
temperature dominates at the slowest transport speed,
where v/a ∼ γth (the thermolubric regime [30]). Its
effect on the fluorescence signal is to smooth the peak
height distribution, which causes us to overestimate the
value of pA and underestimate pB [46]. Evidently, the re-
lationship between fluorescence and probability (Eq. 2)
is strictly valid only for faster transport speeds, where
thermal hopping is negligible (v/a� γth).

Thermal hopping also affects the observed slip proba-
bility to the third minimum pC , which for large η and
large speed is distinctly smaller than predicted. The
third minimum, most distant from the slipping point, has
the smallest potential barrier and the longest dwell time
before the minimum disappears, making the ion most sus-
ceptible to thermal hopping out of that minimum, even
at fast transport speeds. Because a thermal hop at a ran-
dom time does not result in an (averaged) fluorescence
peak, we undervalue the localization probability pC .

FIG. 4: a) Measured static friction force vs η for three differ-
ent drive velocities (v/a = 0.17 γc for green circles, v/a = 0.36
γc for blue squares, v/a = 0.78 γc for black diamonds). The
velocity-dependence of the slope is due to thermal hopping,
which reduces friction for slow transport [30]. The red theory
curve is a realization of the Prandtl-Tomlinson model with no
free parameters, without thermal hopping. b) Energy dissi-
pated per slip vs η. Data points are calculated from exper-
imentally determined values for pi, while the curves use the
model values for pi from Fig. 3. Both use the calculated en-
ergy landscape. Vertical dash-dotted lines separate regimes
with different numbers of minima.

Figs. 2 and 3 show clear delineations of single-slip and
multislip behavior as a function of η. Interestingly, purely
frictional quantities, like the maximal static friction force
Fstatic and energy dissipated per slip Udiss, do not reveal
clear signatures of the transition. Fig. 4a shows that
Fstatic exerted by the lattice on the ion increases mono-
tonically with the corrugation parameter η, without any
discernable changes near the critical values for multista-
bility (Fstatic is determined from the observed hysteretic
shift of the fluorescence peaks as a function of trap trans-
lation, see Fig. 2 and Ref. [31]). Fig. 4b shows the cal-
culated average energy Udiss dissipated per slip by laser
cooling, determined from the measured slip probabilites
pi and the calculated energy landscape V (t) [46]. Like
Fstatic, the dissipated energy Udiss increases monotoni-
cally with the corrugation parameter η, and shows little
dependence on the number n of potential minima in the
energy landscape for n ≥ 2. This can be attributed to the
cancelation of two competing effects: if an ion slips to the
second-next minimum rather than to the next minimum,
it will release more heat, as the second-next minimum
is lower in energy by the time the ion localizes. On the
other hand, an ion slipping to a more distant minimum
will wait longer before it slips again. Thus, to leading or-
der, the dissipation is independent of the slipping mode.
To higher order, the slope dUdiss/dη is slightly reduced
for a potential with more minima, as the reduction in slip
frequency overpowers the smaller increase in dissipated
energy per slip. This trend is visible in Fig. 4b, where
the slope is reduced at the transition between single-slip
and multislip behavior.

In this work, we have measured the slip probabilities
for stick-slip friction in a multistable energy landscape,
and have shown that the dynamic stick-slip process can
be described by a quasi-equilibrium model. We sug-
gest that the model’s predictive power could be used in
nanopositioning applications: by tuning system parame-
ters, a probe could be engineered to multislip to a specific
potential minimum. In the future, these studies could be
extended to the quantum regime in order to study quan-
tum annealing in a multistable energy landscape.
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