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Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is
natural to try to extend the concept to “non-unitary quantum mechanics”, which has seen growing
interest from areas as diverse as open quantum systems, non-interacting electronic disordered sys-
tems, or non-unitary conformal field theory (CFT). We propose and investigate such an extension
here, by focussing on the case of one-dimensional quantum group symmetric or supergroup sym-
metric spin chains. We show that the consideration of left and right eigenstates combined with
appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety
of models. We interpret this definition geometrically in terms of related loop models and calculate
the corresponding scaling in the conformal case. This allows us to distinguish the role of the central
charge and effective central charge in rational minimal models of CFT, and to define an effective
central charge in other, less well understood cases. The example of the sl(2|1) alternating spin chain
for percolation is discussed in detail.

PACS numbers: 05.70.Ln, 72.15.Qm, 74.40.Gh

The concept of entanglement entropy has profoundly
affected our understanding of quantum systems, espe-
cially in the vicinity of critical points [1]. A grow-
ing interest in non-unitary quantum mechanics (with
non-hermitian “Hamiltonians”) stems from open quan-
tum systems, where the reservoir coupling can be repre-
sented by hermiticity-breaking boundary terms [2]. An-
other motivation comes from disordered non-interacting
electronic systems in 2 + 1 dimensions (D) where phase
transitions, such as the plateau transition in the inte-
ger quantum Hall effect (IQHE), can be investigated—
using a supersymmetric formalism and dimensional
reduction—via 1D non-hermitian quantum spin chains
with supergroup symmetry (SUSY) [3]. SUSY spin
chains and quantum field theories with target space
SUSY also appear in the AdS/CFT correspondence
[4, 5] and in critical geometrical systems such as poly-
mers or percolation [6]. Quantum mechanics with non-
hermitian but PT-symmetric “Hamiltonians” also gains
increased interest [7].

Can entanglement entropy be meaningfully extended
beyond ordinary quantum mechanics? We focus in this
Letter on critical 1D spin chains and the associated 2D
critical statistical systems and CFTs. This is the area
where our understanding of the ordinary case is the
deepest, and the one with most immediate applications.

For ordinary critical quantum chains (gapless, with
linear dispersion relation), the best known result con-
cerns the entanglement entropy (EE) of a subsystem
A of length L with the (infinite) rest B at tempera-
ture T = 0. Let ρA = TrBρ denote the reduced den-
sity operator, where |0〉 is the normalized ground state
and ρ = |0〉〈0|. The (von Neumann) EE then reads

SA = −TrAρA ln ρA. One has S ≈ c
3 ln(L/a) for L� a,

where a is a lattice cutoff and c the central charge of
the associated CFT. For the XXZ chain, c = 1.

Statistical mechanics is ripe with non-hermitian crit-
ical spin chains: the Ising chain in an imaginary mag-
netic field (whose critical point is described by the Yang-
Lee singularity), the alternating sl(2|1) chain describ-
ing percolation hulls [8], or the alternating gl(2|2) chain
describing the IQHE plateau transition [3]. The Ising
chain is conceptually the simplest, as it corresponds to
a rational non-unitary CFT. In this case, abstract argu-
ments [9, 10] suggest replacing the unitary result by

SA ≈
ceff

3
ln(L/a) , (1)

where ceff is the effective central charge. For instance,
for the Yang-Lee singularity, c = − 22

5 but ceff = 2
5 ;

in this case (1) was checked numerically [9]. It was
also checked analytically for integrable realizations of
the non-unitary minimal CFT. The superficial similar-
ity with the result s ≈ πceff

3 T for the thermal entropy per
unit length of the infinite chain at T � 1 suggests that
(1) is a simple extension of the scaling of the ground-
state energy in non-unitary CFT [11]. But the situa-
tion is more subtle, as can be seen from the fact that
the leading behavior of the EE is independent of the
(low-energy) eigenstate in which it is computed [12].

There are two crucial conditions in the derivation of
(1): the left and right ground states |0L〉, |0R〉 must be
identical, and the full operator content of the theory
must be known. These conditions hold for minimal,
rational CFT, but in the vast majority of systems the
operator content depends on the boundary conditions
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(so it is unclear what ceff is), and |0L〉 6= |0R〉, begging
the question of how exactly ρ, ρA and SA are defined.

In this Letter we explore this vast subject by concen-
trating on non-Hermitian models with SUSY or quan-
tum group (QG) symmetry. QG symmetric spin chains
pervade theoretical physics [13–16] and harbor many
applications [8, 17–19]. For the sake of illustration,
we focus here on the simplest, prototypical XXZ spin
chain, for which we extend the general framework of
Coulomb gas and loop model representations to EE cal-
culations. We derive (1) for minimal non-unitary mod-
els, and define modified EE involving the true c even
in non-unitary cases. We finally introduce a natural,
non-trivial EE in SUSY cases, even when the partition
function Z = 1.
EE and QG symmetry. We first discuss the critical

Uqsl(2) QG symmetric XXZ spin chain [13]. Let σx,y,zi

be Pauli matrices acting on space i and define the near-
est neighbor interaction

ei = − 1
2

[
σxi σ

x
i+1 + σyi σ

y
i+1 + q+q−1

2 (σzi σ
z
i+1 − 1) + hi

]
with q ∈ C, |q| = 1. The Hamiltonian H = −

∑M−1
i=1 ei

with hi = 0 describes the ordinary critical XXZ chain
onM sites, but we add the hermiticity-breaking bound-
ary term hi = q−q−1

2 (σzi −σzi+1) to ensure commutation
with the Uqsl(2) QG (whose generators are given in the
supplemental material (SM) [20]).

Consider first 2 sites, that is H = −e1. H is not her-
mitian; its eigenvalues are real [21] but its left and right
eigenstates differ. We restrict Arg q ∈ [0, π/2], so the
lowest energy is E(0) = −(q + q−1) (the other eigenen-
ergy is E(1) = 0). The right ground state, defined as
H|0〉 = E(0)|0〉, is |0〉 = 1√

2
(q−1/2| ↑↓〉 − q1/2| ↓↑〉). We

use the (standard) convention that complex numbers are
conjugated when calculating the bra associated with a
given ket; therefore 〈0|0〉 = 1. The density matrix

ρ = |0〉〈0| = 1

2

(
0 0 0 0
0 1 −q−1 0
0 −q 1 0
0 0 0 0

)
(2)

(in the basis ↑↑, ↑↓, ↓↑, ↓↓) is normalized, Tr ρ = 1. Tak-
ing subsystem A (B) as the left (right) spin, the reduced
density operator is ρA = 1

2 ( 1 0
0 1 ), and therefore

SA = ln 2 . (3)

This coincides with the well-known result for the sl(2)
symmetric (hermitian) XXX chain (q = 1). But since
H is non-hermitian, it is more correct to work with left
and right eigenstates defined by H|ER〉 = E|ER〉 and
〈EL|H = E〈EL| (or H†|EL〉 = E|EL〉, since E ∈ R).
Restricting to the sector Sz = 0 we have

|0R〉 = 1√
q+q−1

(
q−1/2| ↑↓〉 − q1/2| ↓↑〉

)
(4)

|1R〉 = 1√
q+q−1

(
q1/2| ↑↓〉+ q−1/2| ↓↑〉

)
(5)

where |0R〉, |1R〉 denote the right eigenstates with en-
ergies E(0), E(1). The left eigenstates |0L〉, |1L〉 are ob-
tained from (4)–(5) by q → q−1. Normalizations are
such that 〈iL|iR〉 = 1, and 〈iL|jR〉 = 0 for i 6= j. Since
〈0R|1R〉 6= 0 we need both L and R eigenstates to build
a projector onto the ground state. We thus define

ρ̃ ≡ |0R〉〈0L| =
1

q + q−1

(
0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

)
, (6)

and ρ̃A = TrB
(
q−2σz

B ρ̃
)

= 1
q+q−1 ( 1 0

0 1 ). We justify the
use of a modified trace shortly with both geometrical
and QG considerations. Observe that ρ̃A is normalized
for the modified trace (note the opposite power of q):
TrA

(
q2σz

A ρ̃A
)

= 1. We now define the EE as

S̃A = −Tr
(
q2σz

A ρ̃A ln ρ̃A

)
= ln(q + q−1) . (7)

The result (7) is more appealing that (3): it depends on
q through the combination q + q−1 which is the quan-
tum dimension of the spin 1/2 representation of Uqsl(2).
Note that (7) satisfies S̃A = S̃B (see SM).
Entanglement and loops. Eq. (7) admits an alterna-

tive interpretation in terms of loop models. Since ei
obey the Temperley-Lieb (TL) relations,

e2
i = (q + q−1)ei ,

eiei±1ei = ei ,

[ei, ej ] = 0 for |i− j| > 1 , (8)

their action can be represented in terms of diagrams:
ei = contracts neighboring lines, and multiplica-
tion means stacking diagrams vertically, giving weight
n ≡ q + q−1 to each closed loop. The ground state
of H = −e1 is |0`〉 = 1√

n
(` stands for loop). We

check graphically that H|0`〉 = −n|0`〉. With the scalar
product ordinarily used in loop models (see SM [20]),
|0`〉 is correctly normalized. The density matrix is
ρ` = 1

n |0`〉〈0`| = 1
n . The partial trace ρA,` = TrB ρ`

glues corresponding sites on top and bottom throughout
B (here site 2). The resulting reduced density matrix
acts only on A (site 1): ρA,` = 1

n . The gluing of A cre-
ates a loop of weight n, so SA,` = −Tr(ρA,` log ρA,`) =
−n × 1

n log 1
n = log n. The agreement with (7) is of

course no accident. Indeed, for any spin-1/2 Hamilto-
nian expressed in the TL algebra (and thus commut-
ing with Uqsl(2)), the EE—and in fact, the N -replica
Rényi (see below) entropies—obtained with the modi-
fied traces and with the loop construction coincide. We
shall call these QG entropies, and denote them S̃.
Coulomb gas calculation of the EE. For the critical

QG invariant XXZ chain with H = −
∑
ei, the EE S̃

scales as expected in CFT, but with the true central
charge c = 1 − 6

x(x+1) (instead of ceff = 1), where we
parametrized q = eiπ/(x+1). The simplest argument for
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this claim is field theoretical. We follow [22], where
the Rényi EE, S(N) ≡ 1

1−N ln Tr ρN , is computed from
N copies of the theory on a Riemann surface with two
branch points a distance L apart. As the density oper-
ator is obtained by imaginary time evolution, we must
project, in the case of non-unitary CFT, onto |0R〉 in the
“past” and on |0L〉 in the “future”, to obtain ρ̃ = |0R〉〈0L|.

We calculate the QG Rényi EE using the loop model.
The geometry of [22] leads to a simple generalization of
well-known partition function calculations [23]: an en-
semble of dense loops now lives on N sheets (with a
cut of length L), and each loop has weight n. Let Z(N)

denote the partition function. Crucially, there are now
two types of loops: those which do not intersect the cut
close after winding an angle 2π, but those which do close
after winding 2Nπ. To obtain the Rényi EE, we must
find the dependence of Z(N) on L.

To this end we use the Coulomb gas (CG) mapping
[24, 25]. The TL chain is associated with a model of ori-
ented loops on the square lattice. Assign a phase e±ie0/4

to each left (right) turn. In the plane, the number of left
minus the number of right turns is ∆N± = ±4, so the
weight n = 2 cos e0 results from summing over orienta-
tions. The oriented loops then provide a vertex model,
hence a solid-on-solid model on the dual lattice. Dual
height variables are defined by induction, with the (stan-
dard) convention that the heights across an oriented
loop edge differ by π. In CG theory, the large-distance
dynamics of the heights is described by a Gaussian field
φ with action A[φ] = g

4π

∫
d2x

[
(∂xφ)2 + (∂yφ)2

]
and

coupling g = 1− e0 = x
x+1 .

With N replicas, we get in this way N bosonic fields
φ1, . . . , φN . The crux of the matter is the cut: a loop
winding N times around one of its ends should still have
weight n, whilst, since ∆N± = ±4N on the Riemann
surface, it gets instead n′ = 2 cosNπe0. We repair this
by placing electric charges at the two ends (labelled l, r)
of the cut, el = e − e0 and er = −e − e0, where e will
be determined shortly. More precisely, we must insert
the vertex operators exp[iel,r(φ1 + . . . + φN )(zl,r, z̄l,r)]
before computing Z(N). This choice leaves unchanged
the weight of loops which do not encircle nor intersect
the cut. A loop that surround both ends (and thus, lives
on a single sheet) gathers e±iπe0 from the turns, and
e±iπ(el+er) = e∓2iπe0 from the vertex operators (since
the loop increases the height of points l and r by ±π).
The two contributions give in the end e∓iπe0 , summing
up to n as required. Finally, for a loop encircling only
one end we get phases e±iel,rNπe±iNπe0 = e±iNπe, so
the correct weight n is obtained setting e = e0

N .
To evaluate the Z(N) we implement the sewing con-

ditions on the surface, φj(z+) = φj+1(z−) with j mod
N , by forming combinations of the fields that obey
twisted boundary conditions along the cut. For in-
stance, with N = 2, we form φ+ = (φ1 + φ2)/

√
2 and

Figure 1. On the Riemann surface used to calculate the
Renyi entropy with N replicas (here N = 2), the black loop
must wind 2πN times before closing onto itself. The red
loop surrounds both ends of the cut.

φ− = (φ1 − φ2)/
√

2. While φ+ does not see the cut,
φ− is now twisted: φ−(z+) = −φ−(z−). For arbitrary
N , the field φsym ≡ (φ1 + . . . + φN )/

√
N does not see

the cut, while the others are twisted by angles e2iπk/N

with k = 1, . . . , N − 1. Using that the dimension of the
twist fields in a complex bosonic theory is [26] hk/N =
k(N − k)/2N2 we find that the twisted contribution
to the partition function is Z(N)(twist) ∝ L−2xN with
xN =

∑N−1
k=1 hk/N = 1

12

(
N − 1

N

)
. Meanwhile, the field

φ+, which would not contribute to the EE for a free bo-
son theory (here e0 = 0), now yields a non-trivial term
due to the vertex operators with el,r: Z(N)(charge) ∝
L−2x′N with x′N = N

e2−e20
2g =

e20
2g

(
1
N −N

)
. Assembling

everything we get Z(N) ∝ L−
1
6 (N− 1

N )(1−6e20/g). Insert-
ing e0 = 1

x+1 and g = x
x+1 gives the Rényi entropies

S̃
(N)
L = N+1

6N

[
1− 6

x(x+1)

]
lnL (9)

(S̃ is obtained for N → 1), hence proving our claim.
We emphasize that the Uqsl(2) spin chain differs from

the usual one simply by the boundary terms hi. These
are not expected to affect the ordinary EE, and the cen-
tral charge obtained via the density operator ρ = |0〉〈0|
(with |0〉 ∝ |0R〉, but normalized as in our introduction)
will be ceff = 1.
Entanglement in non-unitary minimal models. We

now discuss the restricted solid-on-solid (RSOS) lat-
tice models, which provide the nicest regularization of
non-unitary CFTs. In these models, the variables are
“heights” on an Am Dynkin diagram, with Boltzmann
weights that provide yet another representation of the
TL algebra (8), with parameter n = 2 cos πp

m+1 and
p = 1, . . . ,m. The case p = 1 is Hermitian, while p 6= 1
leads to negative weights, and hence a non-unitary CFT.
One has c = 1− 6 p2

(m+1)(m+1−p) , and, for p 6= 1, the ef-
fective central charge—determined by the state of low-
est conformal weight [11] through ceff = c− 24hmin—is
ceff = 1− 6

(m+1)(m+1−p) . The case (m, p) = (4, 3) gives
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the Yang-Lee singularity universality class discussed in
the introduction.

Defining the EE for RSOS models is not obvious, since
their Hilbert space (we use this term even in the non-
unitary case) is not a tensor product like for spin chains.
Most recent numerical and analytical work however ne-
glected this fact, and EE was defined using a straight-
forward partial trace, summing over all heights in B
compatible with those in A. In this case, it was argued
and checked numerically that SA = c

3 lnL in the uni-
tary case, and SA = ceff

3 lnL in the non-unitary case.
Note that c matches that of the loop model based on
the same TL algebra, with x+ 1 ≡ m+1

p . For details on
the QG EE in the RSOS case, see the SM.

The RSOS partition functions can be expressed in
terms of loop model ones, Z`. In the plane, the equiv-
alence [27] replaces equal-height clusters by their sur-
rounding loops, which get the usual weight n through
an appropriate choice of weights on Am. With peri-
odic boundary conditions, the correspondence is more
intricate due to non-contractible clusters/loops. On
the torus [28], Z` is defined by giving each loop (con-
tractible or not) weight n, whereas for the RSOS model
contractible loops still have weight n, but one sums
over sectors where each non-contractible loop gets the
weights nk = 2 cos πk

m+1 for any k = 1, . . . ,m. The
same sum occurs (see SM [20] for details) when com-
puting Z(N) of the Riemann surface with N replicas:
non-contractible loops are here those winding one end
of the cut. Note also that |0L〉 = |0R〉 for RSOS models,
so the imaginary-time definition of ρ in unambiguous
[9, 10].

Crucially, the sum over k is dominated (in the scaling
limit) by the sector with the largest nk, that is k = 1
and n1 = 2 cos π

m+1 . In the non-unitary case (p > 1),
n1 6= n, and the EE is found by extending the above
computation. We have still e0 = p

m+1 , but now e =
1

N(m+1) = e0
pN . To normalize at N = 1, one must divide

by Z(1) to the power N , with the same charges:

Z(N)/
(
Z(1)

)N ∝ L− 1
6 (N− 1

N )
(

1− 6e20
p2g

)
, (10)

whence the Rényi entropy S(N)
A = N+1

6N ceff lnL. Hence
our construction establishes the claim of [9, 10].
EE in the sl(2|1) SUSY chain. Percolation and

other problems with SUSY (see the introduction) have
Z = 1, hence c = 0, and the EE scales trivially. Having
a non-trivial quantity that distinguishes the many c = 0
universality classes would be very useful. We now show
that, by carefully distinguishing left and right eigen-
states, and using traces instead of supertraces, one can
modify the definition of EE to build such a quantity.

We illustrate this by the sl(2|1) alternating chain [8]
which describes percolation hulls. This chain represents
the TL algebra (8) with n = 1, and involves the funda-

mental (V ) and its conjugate (V̄ ) on alternating sites,
with dimV = 3. The 2-site Hamiltonian, H = −e1, re-
stricted to the subspace {|11̄〉, |22̄〉, |33̄〉} (where 1, 2 are
bosonic and 3 is fermionic), reads

e1 = |0R〉〈0L| = (|11̄〉+ |22̄〉+ |33̄〉) (〈11̄|+ 〈22̄|+ 〈33̄|)

The eigenvectors are |0R〉 = |11̄〉+ |22̄〉+ |33̄〉 and 〈0L| =
〈11̄| + 〈22̄| − 〈33̄|; note that conjugation is supergroup
invariant (i.e., 〈3̄|3̄〉 = −1). Hence, despite the mislead-
ing expression, H is not unitary. The density operator is
ρ̃ = e1 and satisfies STr ρ̃ ≡ Tr(−1)F ρ̃ = 1. The reduced
density operator ρ̃A = STrB ρ̃ = |1〉〈1|+ |2〉〈2|+ |3〉〈3|.
If we define the Rényi EE also with the supertrace, we
get STr ρ̃NA = 1 for all N . It is more interesting (and
natural) to take instead the normal trace of ρ̃; this re-
quires a renormalization factor to ensure Tr ρ̃A = 1. We
obtain then ρ̃NA = 1

3N (|1〉〈1|+ |2〉〈2|+ |3〉〈3|) and thus
S̃

(N)
A = ln 3. This equals the QG Rényi EE with n = 3.
This calculation carries over to arbitrary size. One

finds that S̃A = S̃A,` with weight n = 1, provided non-
contractible loops winding around one cut end in the
replica calculation get the modified weight ñ = 3 instead
of n. We can then use the CG framework developed in
the context of the non-unitary minimal models to cal-
culate the scaling behavior. We use (10), with g = 2

3 for
percolation (n = 1), and ñ = 2 cosπe0. It follows that
e0 is purely imaginary, and that S̃(N) ∼ N+1

6N ceff logL

with ceff = 1 + 9
π2

(
log 3+

√
5

2

)2 ∼ 1.84464 . . ..
Numerical checks. All these results were checked nu-

merically. As an illustration, we discuss only the case
q = e2iπ/5, for which the RSOS and loop models have
c = −3/5, while ceff = 3/5 for the RSOS model. In
the corresponding Uqsl(2) chain, we measured the (ordi-
nary) EE as in (3), the QG Rényi EE S̃(2) as in (7), and
the QG Rényi EE for the modified loop model where
non-contractible loops have fugacity n1 = 2 cos π5 (in-
stead of n = 2 cos 2π

5 ). This, recall, should coincide
asymptotically with the Rényi EE for the RSOS model.
Results (see SM) fully agree with our predictions.

Conclusion. While we have mostly discussed the
critical case, we stress that the QG EE can be defined
also away from criticality. An interesting example is the
sl(2|1) alternating chain, for which staggering makes the
theory massive (this corresponds to shifting the topolog-
ical angle away from Θ = π in the sigma-model repre-
sentation). Properties of the QG Rényi EE along this
(and other) RG flows will be reported elsewhere.

Summarizing, this analysis completes our under-
standing of EE in 1D, providing a natural extension
to non-unitary models in their critical or near-critical
regimes. In many situations (such as phenomenolog-
ical “Hamiltonians” for open systems) certain aspects
will differ, but our work may provide the first step in
the right direction. We also establish a long-awaited
“Coulomb gas” handle on the correspondence between
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lattice models and quantum information quantities. Us-
ing this (see SM), we show that, in the case of non-
compact theories, the usual c3 lnL term is corrected by
ln lnL terms (with, most likely, a non-universal ampli-
tude), in agreement with recent independent work [29].
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