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The surface code is a many-body quantum system, and simulating it in generic conditions is
computationally hard. While the surface code is believed to have a high threshold, the numeri-
cal simulations used to establish this threshold are based on simplified noise models. We present
a tensor-network algorithm for simulating error correction with the surface code under arbitrary
local noise. We use this algorithm to study the threshold and the sub-threshold behaviour of the
amplitude-damping and systematic rotation channels. We also compare these results to those ob-
tained by making standard approximations to the noise models.

The working principle behind quantum error correc-
tion is to ‘fight entanglement with entanglement’, i.e.,
protect the data against local interaction with the envi-
ronment by encoding it into delocalized degrees of free-
dom of a many-body system. Thus, characterizing a
fault-tolerant scheme is ultimately a problem of quan-
tum many-body physics.

While simulating quantum many-body systems is
generically hard, particular systems have additional
structure that can be taken advantage of. For exam-
ple, free-fermion Hamiltonians have algebraic properties
that makes them exactly solvable. An analogy in stabi-
lizer quantum error correction is Pauli noise, where errors
are Pauli operators drawn from some fixed distribution.
Due to their algebraic structure, Pauli noise models can
be simulated efficiently using the stabilizer formalism [1].
Beyond Pauli noise, noise composed of Clifford gates and
projections onto Pauli eigenstates can also be simulated
efficiently using the same methods [2].

While such efficiently simulable noise models can be
useful to benchmark fault-tolerant schemes, they do not
represent most models of practical interest. For instance,
qubits that are built out of non-degenerate energy eigen-
states are often subject to relaxation, a.k.a. amplitude
damping. Miscalibrations often result in systematic er-
rors corresponding to small unitary rotations [3]. Given
that these processes do not have efficient descriptions
within the stabilizer formalism, understanding how a
given fault-tolerant scheme will respond to them is a dif-
ficult and important problem.

The simplest approach to such many-body problems
is brute-force simulation, where an arbitrary state in
Hilbert space is represented as an exponentially large
vector of coefficients. Using such methods, small sur-
face codes (up to distance 3) have been simulated under
non-Clifford noise [4]. In another study, brute-force sim-
ulation of the seven-qubit Steane code was performed
without concatenation [5]. Simulation of such low dis-
tance codes allow comparison of noise at the logical level
to the noise on the physical level, however it is difficult to
infer quantities of interest such as thresholds or overheads
from such small simulations. Another approach, akin
to the use of tight-binding approximations in solid-state
physics, is to approximate these noise processes with ef-
ficiently simulable ones [2, 6]. However, the accuracy of

these approximations can be very poor as we will show
below.

In this work, we import quantum many-body methods
developed in the context of solid-state physics to study
quantum error correction with realistic, non-Clifford
noise models. Our construction hinges on the fact
that the surface code is a projected-entangled-pair state
(PEPS) with low bond dimension [7]. As a basic demon-
stration, we use our method to simulate the surface code
under two non-Clifford local noise models: amplitude
damping and systematic rotation. We assume that syn-
drome measurements are performed perfectly. We obtain
thresholds for these noise models and also study error
correction in the region of practical interest, where the
noise strength is low relative to the threshold. These re-
sults are compared with those obtained using standard
Pauli approximations, and significant discrepancies are
observed. We have performed exact simulations on codes
of up 153 data qubits, while in contrast, previous stud-
ies using brute-force simulations were limited to 13 data
qubits and 12 syndrome qubits [4].

Tensor networks — For our purposes, a tensor Ai1,i2,...,in
is an n-index array of complex numbers, where ik runs
from 0 toDk−1, whereDk is called the bond dimension of
ik. We represent a tensor graphically as a box, and each
index of the tensor as an edge emanating from that box.
When two tensors are linked by an edge, the connected
indices are summed over, for instance
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It will often be convenient to group multiple indices to-
gether, using the notation Ai1,i2,...,in = Ai where a bold
subscript is taken to mean that the index is composed of
multiple indices.

We will define an N -particle projected entangled
pair state (PEPS) |ψ〉 to be a quantum state whose
tensor of coefficients ψi1,i2...iN = 〈i1, . . . , iN |ψ〉 is
the contraction of a network of N tensors T =
{A(1)

i1,α1
, A

(2)
i2,α2

, . . . , A
(N)
iN ,αN

}, each of which has one phys-
ical index labelled i and some number of virtual indices
labelled α. We assume that the physical particles have
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dimension d, that each virtual index has bond dimen-
sion D, and the number of virtual indices per tensor in
T is less than a constant n. This implies that the ten-
sor network description of |ψ〉 is memory efficient: while
the tensor ψi1,i2...iN has dN entries, each tensor in T has
at most dDn entries and thus the whole set T can be
specified with only NdDn complex numbers.

The surface code tensor network — We consider the
optimized layout of the surface code introduced in [8]
where qubits are placed on the vertices of a W ×L rect-
angular lattice and x-check operators Af =

∏
i∈f Xi and

z-check operators Bf =
∏
i∈f Zi are defined on alternat-

ing faces of the lattice in a checkerboard pattern. This
layout is illustrated in Supplemental Material III. The
logical qubit state |0〉L is defined to be the simultaneous
+1 eigenspace of all check operators and of the logical
operator Z, where Z is a string of Z’s along the left
boundary of the code. Likewise, the state |1〉L is fixed by
all check operators but is a −1 eigenstate of Z, it can be
obtained as X|0〉L, where X is a product of X operators
along the bottom boundary of the code. Given that the
product state |0〉⊗N has non-zero overlap with |0〉L, and
that |0〉⊗N is a +1 eigenstate of every Bf and Z, we have

|0〉L ∝
∏

f

1

2
(I +Af )|0〉⊗N , (1)

where 1
2 (I +Af ) is the projector onto the +1 eigenspace

of Af , and the product is taken over all x-checks.
Let Wi,i′,α(C), be a tensor with two physical indices

i, i′ and an arbitrary number of virtual indices α =
α1, α2, . . . , that depends on a 2×2 matrix C. Each index
of W (C) has bond dimension two, and the only non-zero
entries of W (C) are

Wi,i′,0(C) = δi,i′ and Wi,i′,1(C) = Ci,i′ , (2)

where 0(1) means that all virtual indices are set to 0
(1), and the symbol δi,i′ denotes the Kronecker delta.
For convenience, we define Q± = W (±X) and R± =
W (±Z).

Consider the projector 1
2 (I + Af ) acting on particles

1,2,3 and 4 ordered clockwise around a face. It can easily
be verified that the tensor 〈i1, i2, i3, i4|I+Af |i′1, i′2, i′3, i′4〉
can be expressed as a contraction of four tensors

∑

α1,α2,α3

Q+
i1,i′1,α1

Q+
i2,i′2α1,α2

Q+
i3,i′3α2,α3

Q+
i4,i′4α3

. (3)

We remark that the tensor description for the projection
onto the −1 eigenspace of Af is identical to Eq. (3) but
with any one of the Q+ tensors replaced with Q−. Pro-
jections onto eigenspaces of Bf operators can be defined
analogously by replacing all Q’s with R’s. The tensor
network corresponding to the product of projectors in
Eq. (1), is obtained by overlapping the tensor projector
in Eq. (3) over the whole lattice.

The state |0〉L is then obtained by applying this pro-
jector to the state |0〉⊗N , which, in the tensor network

picture, corresponds to fixing the second index to zero,
thus effectively removing it. A square-lattice tensor net-

work T = {A(1)
i1,α1

, A
(2)
i2,α2

, . . . , A
(N)
iN ,αN

} for the state |0〉L
is thus formed from contractions of Q+ tensors.

While this tensor network describes the logical |0〉L
state, we will need to be able to represent other states in
order to fully characterise the transformation of the en-
coded information during error correction. Specifically,
we want to compute the logical channel EL that is applied
to the logical qubit during a round of error correction. By
the Choi-Jamiolkowski isomorphism, this channel can be
inferred directly from the resulting output when a Bell
state of the form |Ψ+〉 = |0〉L|0〉a + |1〉L|1〉a is input,
where the first qubit is encoded in a surface code and
is subject to error correction, while the second qubit is
unencoded and assumed to be noise free. We can obtain
a tensor network description for |Ψ+〉 by a simple modi-
fication to the tensor network describing |0〉L. Consider
the tensor

CNOT :=
∑

α1,α2,...,αL

Q+
i1,i′1,α1

Q+
i2,i′2α1,α2

. . . Q+
iL,i′LαL,αa

,

(4)
which can be thought of as an L qubit operator (ex-
pressed in tensor form) with a single uncontracted virtual
index αa, which we call the ancilla index. If αa is set to
0 then CNOT is simply the identity on its physical in-
dices, while if αa = 1, CNOT is an L-fold tensor product
of X. Therefore if CNOT is applied to the bottom row
of the tensor network for |0〉L, the resulting tensor net-
work state ψi1,i2,...,iN ,αa

= 〈i1, i2, . . . , iN , αa|ψ〉 (which
includes the ancilla index as a physical particle) will be
the desired Bell state |0〉L|0〉a + (X|0〉L)|1〉a = |Ψ+〉.

The above tensor network definitions are for pure
states. However as we will be considering non-
unitary noise, we will want a tensor network descrip-
tion for density matrices. Given a tensor network

{A(1)
i1,α1

, A
(2)
i2,α2

, . . . , A
(N)
iN ,αN

} for a pure state |ψ〉, we ob-

tain the tensor network {B(1)
i1,α1

, B
(2)
i2,α2

, . . . , B
(N)
iN ,αN

} for

the density matrix 〈i1, . . . , iN |ψ〉〈ψ|i′1, . . . , i′N 〉 by defin-

ing B
(k)
i,α = A

(k)
i,α′A

(k)∗
i′,α′′ , where i = i, i′ and α = α′,α′′

represent combined sets of physical and virtual indices
respectively. The resulting tensor network is illustrated
in Fig. 1a).

Simulation of error correction — The evolution of the
tensor network during the error-correction simulation is
illustrated in Fig. 1. We start with the density matrix for
the half encoded Bell state described above. The noisy
state is obtained by applying the desired CPTP map E
to every qubit in the code. This corresponds to the local
tensor update

Bi,i′,α ←
∑

j,j′

Eijj′i′Bj,j′,α , (5)

where Eijj′i′ := 〈i|E(|j〉〈j′|)|i′〉, as depicted in 1b).
During error correction, every check will be measured,

yielding a set of measurement outcomes s = (m1,m2, . . . )
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FIG. 1: Simulation of error correction with the surface
code. a) The surface-code density operator as a tensor
network. The two additional indices on the bottom right
tensor are ancilla indices. b) Applying noise local noise
to the state. c) Applying a check projector Pk (red) to
the state. Green tensors have been involved in previous
check measurements, while blue tensors have not. d)
The resulting tensor network representing Tr(Pk+1ρk)
obtained by capping off pairs of physical indices.

corresponding to a syndrome s with probability ps =
Tr(Πsρ), where Πs is the projection onto the syndrome
subspace corresponding to s and ρ is the noisy code state.
We will assume that measurements are performed per-
fectly. In order to sample from the distribution ps we
imagine measuring checks sequentially. We can compute
the conditional probability p(mk|m1,m2, . . . ,mk−1) for
any k as follows. Let ρk be the state of the system after k
check measurements and let Pk+1 be the projection onto
the +1 eigenspace of the k+1th check. The probabilities
of obtaining an outcome of 1 and −1 are given respec-
tively by q = Tr(Pk+1ρk) and 1− q. To obtain a tensor
network for Pk+1ρk, we apply the tensor corresponding
to the check projector to the tensor network of ρk as il-
lustrated in Fig. 1c). For example, a 4-qubit x-check can
be decomposed as a contraction of four Q+ tensors, as in
Eq. (3). To apply the check to ρk we contract these Q+

tensors with the measured physical indices, specifically

Bi,i′,α ←
∑

j

Q+
i,j,α′Bj,i′,α′′ , (6)

where the updated virtual indices α contain the original
virtual indices of B as well as those of the appended Q+.
Then, to evaluate q, we take the trace of every tensor
(Bα ←

∑
iBi,i,α). The resulting tensor network has no

physical indices and is illustrated in Fig. 1d). We then
contract all virtual indices in the network.

This last step corresponds to contracting a square-
lattice tensor network. Generically, this problem is #P -
complete and therefore no efficient algorithm is believed
to exist [9]. However, many efficient algorithms have been
developed to obtain approximate solutions to this prob-
lem [10–15]. In this work we have used both an exact,
albeit inefficient, contraction algorithm as well as an effi-
cient, approximate contraction algorithm for finite-sized
PEPS with open boundary conditions [10].

To contract the tensor network exactly, we merge all
tensors of the left column into a singe tensor, then con-
tract this sequentially with the remaining tensors from
left to right. The algorithm is inefficient because the
amount of memory required to store the tensor associ-
ated to a column is exponential in the lattice width. We
note, however, that we have used a number of optimiza-
tions to significantly improve the efficiently of the algo-
rithm. These are described in Supplemental Material
III. With exact contraction, the complexity of sampling
a single syndrome is O(W4W ), and thus the complex-
ity of sampling all syndromes (and of the entire algo-
rithm) is O(LW 24W ). For efficient, approximate con-
traction, we use a well known algorithm described in
[16], which represents the contraction of the network as
the repeated multiplication of a matrix-product state by
matrix-product operators. This algorithm depends on an
accuracy parameter χ and contraction of the lattice takes
time O(LWχ3).

When all check outcomes have been obtained, we have
sampled a syndrome s from the distribution ps, and the
tensor network encodes a noisy state with appropriate
check projectors applied. The state is then returned to
the code space via a Pauli operator, which we choose to
be a product of X operators connecting each flipped Bf
check to the left boundary and Z connecting each flipped
Af check to the top boundary.

At this point, a classical algorithm, called the decoder,
is used to select one of four possible corrections I,X, Y , Z
to be applied to the state. The decoder uses information
about the syndrome and the noise model to select the
correction that minimises the overall logical error. For
efficiency this is usually only done approximately [17–26].
In this work we perform decoding by choosing the correc-
tion that minimizes the distance between the computed
logical channel and the identity. The entire procedure
(application of noise, check measurements, returning to
the code space, correction) yields a CPTP map EL acting
on the encoded qubit. The calculation of EL as well as
the decoding algorithm are performed using essentially
the same method as the syndrome sampling and are de-
scribed in detail in Supplementary Material I.

Numerical results — Two non-Pauli noise models are con-
sidered: systematic rotation about the z-axis ESR(ρ) =
e−iθZρeiθZ where θ ∈ [0, π) is the rotation angle, and

amplitude damping EAD(ρ) =
∑
iKiρK

†
i , which has two

Kraus operators

K0 = |0〉〈0|+
√

1− γ|1〉〈1| , K1 =
√
γ|0〉〈1| , (7)

where γ ∈ [0, 1] is the damping parameter. As a test, we
also performed simulations with the depolarising channel
EDP (ρ) = (1− ε)ρ+ ε

3XρX + ε
3Y ρY + ε

3ZρZ, which is a
well studied Pauli channel.

We have also considered two different Pauli approx-
imations of these channels. The Pauli twirl approxi-
mation (PTA) to an arbitrary channel expressed in the
Pauli basis E(ρ) =

∑
i,j χi,jPiρPj is the channel EPTA =
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Exact PTA HPA

DP (ε) 18.5 ± 1.5% 18.5 ± 1.5% 18.5 ± 1.5%

AD (γ) 39 ± 2% 39 ± 2% 21 ± 1%

SR (θ/π) > 0.15 0.17 0.055

TABLE I: Computed thresholds for three noise models
and their Pauli approximations. PTA and HPA to SR
were computed using the exact value of the threshold
under bit flip noise. Pauli approximations of DP are
identical to the exact channel, so only the exact channel
was simulated.

∑
i χi,iPiρPi, obtained by removing the off-diagonal ele-

ments of χi,j [27, 28]. It can produce noise models that
are much better behaved, and thus provide poor insight
into the performance of the real channel. For this reason,
an honest Pauli approximation (HPA) was introduced [6],
which seeks the channel EHPA which is as close as possi-
ble to the original channel yet produces a noisier output
on every possible input. This approximation is thus ex-
pected to provide a pessimistic bound on the performance
of a fault tolerant scheme under some noise process E .

As a first application, we have used the exact simu-
lation algorithm to estimate thresholds, which are pre-
sented in table I. Details on how thresholds were de-
termined are provided in Supplemental Material II. The
largest lattice sizes simulated were 9×9 for depolarising,
11× 11 for systematic rotation and 9× 17 for amplitude
damping. For amplitude damping we found that a non-
square lattice, where the X logical operator runs along
the long dimension of the code, performed significantly
better than a square one.

For the depolarising channel, we can compare our ob-
tained threshold with exact results. We find that our
threshold estimate agrees with the optimal depolarising
threshold of 18.9(3)%[29].

The systematic rotation channel was simulated for ro-
tation angles between 0.025π ≤ θ ≤ 0.3π. A large re-
gion showed below threshold behaviour, however no clear
transition behaviour could be identified.

The thresholds of Pauli approximations did not always
agree with the thresholds of the exact channels. However,
the twirl approximation to amplitude damping, yielded
the same threshold as the exact channel (to within the
accuracy of our data). As expected, the honest Pauli ap-
proximations provided pessimistic values of the threshold
for non-Pauli channels.

As another application of our algorithm, we have per-
formed exact simulations at fixed noise rates well be-
low threshold. The results are presented in Fig. 2 for
amplitude damping with γ = 9% , and z-rotation with
θ = 0.005π. Again, the behaviour of the twirl approx-
imation agrees quite well with that of the exact ampli-
tude damping channel. However the behaviour of both
approximations differed considerably from the exact z-
rotation. For instance, for a code with W = 5, the PTA
underestimates the logical error rate by a factor of about
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FIG. 2: Empirical logical error rate vs lattice dimension
for two non-Pauli noise models. Solid black lines
represent exact channels while dashed and dotted lines
represent the PTA and the HPA, respectively. The left
plot is γ = 9% amplitude damping, while the right plot
is θ = 0.005π systematic rotation. For each set of
parameters, 1.32× 105 syndromes were sampled to
acquire statistics. For the PTA of SR with W > 5, error
rates are numerically zero. Error rates obtained for the
exact channels using an approximate contraction
algorithm with χ = 8 are also plotted in blue. Note that
the exact average logical error could significantly differ
from the empirical average observed over millions of
syndrome measurements if failures are dominated by
outliers.

1010, while the HPA over-estimates the logical error rate
by a factor of about 104. The observed discrepancies
highlight the fact that the performance of the code under
an efficiently simulable approximation to a noise model
can differ significantly from its performance under the ex-
act noise model and motivates the development of more
efficient algorithms, such as the one presented here.

We have also computed error rates using the exact
channels but with an approximate contraction algorithm
in place of the (inefficient) exact algorithm. Setting χ = 8
in the calculation of the logical channel, we observe re-
markably good agreement with exact data. For instance,
at high noise rates, we obtain the same threshold (within
statistical error) for the amplitude damping channel (see
the threshold plot in Supplemental Material II). We also
observe very good agreement with exact data for system-
atic rotation and amplitude damping at low logical error
rates, as is displayed in Fig. 2).

Conclusion — We have presented a simple tensor-
network based algorithm for simulating the surface code
under arbitrary local noise. The algorithm can be made
exact within statistical fluctuations, allowing accurate
simulation of systems with well over one hundred qubits.
We have used exact simulation to estimate thresholds of
non-Pauli noise models, and to calculate error rates well
below threshold.

In order to demonstrate scalability of the simulation,
we have also used an approximate, efficient algorithm to
calculate the logical channel in place of the exact algo-
rithm. We found very good agreement with the exact
data for non-Pauli noise at both high, and low logical
error rates.
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While our simulation algorithm has assumed perfect
check measurements, in practice, measurement errors are
unavoidable. In surface-code error correction, measure-
ment errors are detected by performing multiple rounds
of check measurements and observing how the syndrome
evolves in time. This procedure could potentially be sim-

ulated using PEPS time-evolution algorithms [30–33], or
by contracting 3D tensor networks [34].
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