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We generalize the hierarchy construction to generic 2+1D topological orders (which can be non-
Abelian) by condensing Abelian anyons in one topological order to construct a new one. We show
that such construction is reversible and leads to a new equivalence relation between topological
orders. We refer to the corresponding equivalent class (the orbit of the hierarchy construction) as
“the non-Abelian family”. Each non-Abelian family has one or a few root topological orders with the
smallest number of anyon types. All the Abelian topological orders belong to the trivial non-Abelian
family whose root is the trivial topological order. We show that Abelian anyons in root topological
orders must be bosons or fermions with trivial mutual statistics between them. The classification
of topological orders is then greatly simplified, by focusing on the roots of each family: those roots
are given by non-Abelian modular extensions of representation categories of Abelian groups.

PACS numbers: 05.30.Pr, 71.10.Pm

Introduction: The ultimate dream of classifying ob-
jects in nature may be creating a “table” for them. A
classic example of such classification result is the “Peri-
odic Table” for chemical elements. As for the topolog-
ical ordered[1, 2] phases of matter, which draws more
and more research interests recently, we are already able
to create some “tables” for them[3–8], via the theory of
(pre-)modular categories. However, efforts are needed
to further understand the tables, for example, to reveal
some “periodic” structures in the table.

In the Periodic Table, elements are divided into sev-
eral “families” (the columns of the table), and those in
the same family have similar chemical properties. The
underlying reason for this is that elements in the same
family have similar outer electron structures, and only
differ by “noble gas cores”. The last family consists of
noble gas elements, which are chemically “inert”, as they
have no outer electrons besides the noble gas cores. Thus
the “family” can be considered as the equivalent class up
to the “inert” noble gas elements.

When it comes to topological orders, we also have “in-
ert” ones: the Abelian topological orders are “inert”,
for example, in the application of topological quantum
computation[9, 10]. Abelian anyons can not support non-
local topological degeneracy, which is an essential differ-
ence from non-Abelian anyons. Is it possible to define
equivalent classes for topological orders, which are up to
Abelian topological orders? In this letter, we use the hi-
erarchy construction to establish such equivalent classes,
which we will call the “non-Abelian families”. The hier-
archy construction is well known in the study of Abelian
fractional quantum Hall (FQH) states[11–14]. In this let-
ter we generalize it to arbitrary (potentially non-Abelian)
topological orders.

We show that the generalized hierarchy construction
is reversible. Thus, we can say that two topological or-
ders belong to the same “non-Abelian family” if they are

related by the hierarchy construction. Each non-Abelian
family has special “root” topological orders (see Table I),
with the following properties:

1. Root states have the smallest rank (number of
anyon types) among the non-Abelian family.

2. Abelian anyons in a root state are all bosons or
fermions, and have trivial mutual statistics with
each other.

Since any topological order in the same non-Abelian fam-
ily can be reconstructed from a root state, our work sim-
plifies the classification of generic topological orders to
the classification of root states.

Our calculation is based on quantitative characteriza-
tions of topological orders. One way to do so is to use
the S, T modular matrices obtained from the non-Abelian
geometric phases of degenerate ground states on torus
[1, 2]. We will show, starting from a topological order
described by S, T , how to obtain another topological or-
der described by new S′, T ′ via a condensation of Abelian
anyons. (For a less general approach based on wave func-
tions, see Ref. 15.) The calculation uses the theory of fu-
sion and braiding of quasiparticles (which will be called
anyons) in topological order. Such a theory is the so
called “unitary modular tensor category (UMTC) the-
ory” (for a review and much more details on UMTC, see
Ref. 5).

A UMTC C is simply a set of anyons (two anyons con-
nected by a local operator are regarded as the same type),
plus data to describe their fusion and braiding. Like the
fusion of two spin-1 particles give rise to a “direct sum”
of spin-0,1,2 particles: 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2, the fusion of
two anyons i and j in general gives rise to a “direct sum”
of several other anyons: i ⊗ j =

⊕

k N
ij
k k. So the fusion

of anyons is quantitatively described by a rank-3 inte-
ger tensor N ij

k . From N ij
k , we can determine the internal
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degrees of freedom of anyons, which is the so called quan-
tum dimension. For example, the quantum dimension of
a spin-S particle is d = 2S + 1. For an anyon i, its
quantum dimension di, which can be non-integer, is the
largest eigenvalue of matrix Ni with (Ni)kj = N ij

k .
After knowing the fusion, the braiding of anyons can

be fully determined by the fractional part of their angular
momentum Lz: si = mod(Lz

i , 1). si is called the topolog-
ical spin (or simply spin) of the anyon i. The last piece of
data to characterize topological orders is the chiral cen-
tral charge c, which is the number of right-moving edge
modes minus the number of left-moving edge modes.
It turns out that two sets of data (S, T ) and (N ij

k , si)
can fully determine each other:

Tij = e2πisiδij , Sij =
∑

k

e2πi(si+sj−sk)
N ij

k dk
D

,

e2πisi = Tii, N ij
k =

∑

l

SliSljSlk

Sl1
. (1)

where D =
√

∑

d2i is the total quantum dimension.
Hierarchy construction in generic topological or-

ders: Let us consider an Abelian anyon condensation
in a generic topological order, described by a UMTC C.
(Such a condensation in an Abelian topological order is
discussed in the Supplemental Material [16]) The anyons
in C are labeled by i, j, k, · · · . Let ac be an Abelian
anyon in C with spin sc. We condense ac into the Laugh-
lin state Ψ =

∏

(zi − zj)
mc−2sc , where mc = even and

mc − 2sc 6= 0. [17] The resulting topological order is
described by UMTC D, determined by C, ac and mc.
To calculate D, we note that the anyons in D are the

anyons i in C dressed with the vortices of the Laughlin
state of ac. The vorticity is given by m − ti, where m
is an integer, and 2πti is the mutual statistics angle be-
tween anyon i and the condensing anyon ac in the original
topological order C, which can be extracted from the S
matrix e−2πiti = SC

iac
/SC

i1, or −ti = si+sac
−si⊗ac

. Thus
anyons in D are labeled by pairs I = (i,m). We like to
ask what is the spin and fusion rules of I = (i,m)?
The spin of (i,m) is given by the spin of i plus the spin

of the m− ti flux in the Laughlin state:

s(i,m) = si +
1

2

(m− ti)
2

mc − 2sc
(2)

Fusing i with m− ti flux and j with n− tj flux gives us
i⊗ j with m− ti + n− tj flux:

(i,m)⊗ (j, n) ∼ ⊕kN
ij
k (k,m− ti + n− tj + tk), (3)

where N ij
k is the fusion coefficient in C. Since ac with

mc−tac
= mc−2sc flux is condensed, fusing with (ac,mc)

anyon does not change the anyon type in D. So, we have
an equivalence relation:

(i,m) ∼ (i⊗ ac,m− ti +mc − 2sc + ti⊗ac
), (4)

TABLE I. The low-rank root topological orders for bosonic
systems. We pick only one root for each non-Abelian family.
The rank N is the number of anyon types and c the chiral
central charge of the edge states. si and di are the topological
spin and quantum dimension of type-i anyon. The anyons
with red entries have trivial mutual statistics with all Abelian
anyons. Here ζmn = sin[π(m+1)/(n+2)]

sin[π/(n+2)]
. Some roots are the

stacking of simpler ones, such as 40 = 2 14
5
⊠ 2 26

5
.

Nc D2 s1, s2, · · · d1, d2, · · ·
10 1 0 1
2 14

5
3.618 0, 2

5
1, ζ13

2 26
5

3.618 0, 3
5

1, ζ13
3 5

2
4 0, 1

2
, 5
16

1, 1, ζ12
3 8

7
9.295 0, 6

7
, 2
7

1, ζ15 , ζ
2
5

3 48
7

9.295 0, 1
7
, 5
7

1, ζ15 , ζ
2
5

40 13.09 0, 2
5
, 3
5
, 0 1, ζ13 , ζ

1
3 , ζ

2
8

4 12
5

13.09 0, 3
5
, 3
5
, 1
5

1, ζ13 , ζ
1
3 , ζ

2
8

4 28
5

13.09 0, 2
5
, 2
5
, 4
5

1, ζ13 , ζ
1
3 , ζ

2
8

4 10
3

19.23 0, 1
3
, 2
9
, 2
3

1, ζ17 , ζ
2
7 , ζ

3
7

4 14
3

19.23 0, 2
3
, 7
9
, 1
3

1, ζ17 , ζ
2
7 , ζ

3
7

52 12 0, 0, 1
8
, 5
8
, 1
3

1, 1, ζ14 , ζ
1
4 , 2

56 12 0, 0, 7
8
, 3
8
, 2
3

1, 1, ζ14 , ζ
1
4 , 2

5 16
11

34.64 0, 9
11
, 2
11
, 1
11
, 6
11

1, ζ19 , ζ
2
9 , ζ

3
9 , ζ

4
9

5 72
11

34.64 0, 2
11
, 9
11
, 10
11
, 5
11

1, ζ19 , ζ
2
9 , ζ

3
9 , ζ

4
9

5 18
7

35.34 0, 6
7
, 6
7
, 1
7
, 3
7

1, ζ25 , ζ
2
5 , ζ

2
12, ζ

4
12

5 38
7

35.34 0, 1
7
, 1
7
, 6
7
, 4
7

1, ζ25 , ζ
2
5 , ζ

2
12, ζ

4
12

6 3
10

14.47 0, 1
2
, 11
16
, 9
10
, 2
5
, 7
80

1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3

6 77
10

14.47 0, 1
2
, 5
16
, 1
10
, 3
5
, 73
80

1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3

60 20 0, 0, 1
5
, 4
5
, 0, 1

2
1, 1, 2, 2,

√
5,
√
5

64 20 0, 0, 2
5
, 3
5
, 1
4
, 3
4

1, 1, 2, 2,
√
5,
√
5

6 58
35

33.63 0, 2
5
, 1
7
, 5
7
, 19
35
, 4
35

1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

2
5ζ

1
3

6 138
35

33.63 0, 2
5
, 6
7
, 2
7
, 9
35
, 24
35

1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

2
5ζ

1
3

6 142
35

33.63 0, 3
5
, 1
7
, 5
7
, 26
35
, 11
35

1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

2
5ζ

1
3

6 222
35

33.63 0, 3
5
, 6
7
, 2
7
, 16
35
, 31
35

1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

2
5ζ

1
3

6 46
13

56.74 0, 4
13
, 2
13
, 7
13
, 6
13
, 12
13

1, ζ111, ζ
2
11, ζ

3
11, ζ

4
11, ζ

5
11

6 58
13

56.74 0, 9
13
, 11
13
, 6
13
, 7
13
, 1
13

1, ζ111, ζ
2
11, ζ

3
11, ζ

4
11, ζ

5
11

6 8
3

74.61 0, 1
9
, 1
9
, 1
9
, 1
3
, 2
3

1, ζ37 , ζ
3
7 , ζ

3
7 , ζ

4
16, ζ

6
16

6 16
3

74.61 0, 8
9
, 8
9
, 8
9
, 2
3
, 1
3

1, ζ37 , ζ
3
7 , ζ

3
7 , ζ

4
16, ζ

6
16

62 100.6 0, 6
7
, 5
7
, 3
7
, 0, 1

3
1, 3+

√

21
2

× 3, 5+
√

21
2

, 7+
√

21
2

66 100.6 0, 1
7
, 2
7
, 4
7
, 0, 2

3
1, 3+

√

21
2

× 3, 5+
√

21
2

, 7+
√

21
2

The above three relations fully determine the topological
order D.[5, 6]

It is important to fix a “gauge” for ti, say by choos-
ing ti ∈ [0, 1). The same label (i,m) may label different
anyons under different “gauge” choices of ti. Similarly,
we have fixed a “gauge” for sc that fixed the meaning
of mc. Note that tac

is automatically fixed when sc is
fixed: tac

= 2sc, while other ti can be freely chosen.
This ensures that the equivalence relation (4) is com-
patible with fusion (3), where (4) is generated by fusing
with the trivial anyon (ac,mc). The combinations m−ti,
mc − 2sc determine the final spins and fusion rules; they
are gauge-invariant quantities. Thus, if we change the
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gauge of ti, sc, i.e., modify them by some integers, m,mc

should be modified by the same integers to ensure that
the construction remains the same.
Below we will study the properties of D in detail. Let

Mc = mc − 2sc. Applying the equivalence relation (4) q
times, we obtain

(i,m) ∼ (i⊗ a⊗q
c ,m− ti + qMc + t

i⊗a
⊗q
c
). (5)

Let qc be the “period” of ac, i.e., the smallest positive
integer such that a⊗qc

c = 1. We see that (i,m) ∼ (i,m+
qcMc). Thus, we can focus on the reduced range of m ∈
{0, 1, 2, · · · , qc|Mc| − 1}. Let |C|, |D| denote the rank of
C,D respectively. Now within the reduce range of m, we
have qc|Mc||C| different labels, and we want to show that
the orbit generated by the equivalence relation (5) all
have the same length, which is qc. To see this, just note
that for 0 < q < qc, either i 6= i ⊗ a⊗q

c , or if i = i⊗ a⊗q
c ,

m 6= m−ti+qMc+t
i⊗a

⊗q
c

= m+qMc; in other words, the
labels (i,m) are all different within qc steps. It follows
that the rank of D is |D| = |Mc||C|.
Strictly speaking, anyons in D should one-to-one cor-

respond to the equivalent classes of (i,m). However, as
the orbits have the same length, it would be more con-
venient to use (i,m) directly (as we will see later, this
is the same as working in a pre-modular category D̃).
For example, when we need to sum over anyons in D, we

can instead do
∑

I∈D → 1
qc

∑

i∈C

∑qc|Mc|−1
m=0 . Now we are

ready to calculate other quantities of the new topological
order D. First, it is easy to see that the quantum dimen-
sions remain the same d(i,m) = di. The total quantum
dimension is then

D2
D =

1

qc

∑

i∈C

qc|Mc|−1
∑

m=0

d2(i,m) = |Mc|D
2
C . (6)

The S matrix is

SD
(i,m),(j,n) =

∑

k

N ij
k

DD
dk e

2πi[s(i,m)+s(j,n)−s(k,m+n+tk−ti−tj)
]

=
1

√

|Mc|
SC
ij e

−2πi
(m−ti)(n−tj )

Mc . (7)

It is straightforward to check that SD
(i,m),(j,n) is unitary

(with respect to equivalent classes of (i,m)). Moreover,
this formula for S can recover the equivalence relation (5)
and fusion rules (3) via unitarity and Verlinde formula.
The new SD, TD matrices (TD-matrix is determined by

the spin of anyons sD(i,m) in (2)), as well as SC , T C, should

both obey the modular relations STS = e2πi
c
8T †ST †,

from which we can extract the central charge of D. The
new central charge is found to be (see the Supplementary
Material [16])

cD = cC + sgn(Mc). (8)

Clearly, the one-step hierarchy construction described by
(2), (7), and (8) is fully determined by an Abelian anyon
ac and Mc, where Mc + 2sc is an even integer. In the
Supplemental Material [16], we discuss the above hierar-
chy construction more rigorously at the full categorical
level.
As an application, let us explain the “eight-fold way”

observed in the table of topological orders[5, 6]: whenever
there is a fermionic quasiparticle, the topological order
has eight companions with the same rank and quantum
dimensions but different spins and central charges. If we
apply the one-step condensation with ac being a fermion,
andMc = ±1, a new topological order of the same rank is
obtained. [18] The spins of the anyons carrying fermion
parity flux (having non-trivial mutual statistics with the
fermion ac) are shifted by ±1/8, and the central charge is
shifted by ±1, while all the quantum dimensions remain
the same. If we repeat it eight times, we will go back
to the original state (up to an E8 state), generating the
“eight fold way”.
Reverse construction and non-Abelian families:
The one-step condensation from C to D is always re-
versible. In D, choosing a′c = (1, 1), s′c = 1

2Mc
, m′

c =
0, M ′

c = −1/Mc, and repeating the construction, we will
go back to C. One may first perform the construction for
a pre-modular D̃ and then reduce the resulting category
to a modular category. Taking (j, n) = a′c = (1,−1) in
(7) we find that the mutual statistics between (i,m) and
a′c = (1, 1) is t′(i,m) = m−ti

Mc
. Let (i,m, p), (j, n, q) label

the anyons after the above one-step condensation; the
new S matrix is

S(i,m,p),(j,n,q) = SC
ij e

−
2πi(m−ti)(n−tj)

Mc e
−

2πi(p−t′
(i,m)

)(q−t′
(j,n)

)

M′
c

= SC
ij e

2πi(tiq+tjp−tacpq) = SC
i⊗ā

⊗p
c ,j⊗ā

⊗q
c
, (9)

which means that we can identify (i,m, p) with i⊗ā⊗p
c (āc

denotes the anti-particle of ac). It is easy to check that
they have the same spin s(i,m,p) = s

i⊗ā
⊗p
c

. Therefore, i ∼

(i⊗ a⊗p
c ,m, p), ∀m, p, we have come back to the original

state C. Therefore, generic hierarchy constructions are
reversible, which defines an equivalence relation between
topological orders. We call the corresponding equivalent
classes the “non-Abelian families”.
Now we examine the important quantityMc = mc−2sc

which relates the ranks before and after the one-step con-
densation, |D| = |Mc||C|. Since mc is a freely chosen even
integer, when ac is not a boson or fermion (sc 6= 0 or
1/2 mod 1), we can always make 0 < |Mc| < 1, which
means that the rank is reduced after one-step conden-
sation. We then have the first important conclusion:
Each non-Abelian family have “root” topological orders
with the smallest rank; the Abelian anyons in the “root”
states are all bosons or fermions.
We can further show that the Abelian bosons or

fermions in the “root” states have trivial mutual statis-
tics among them. To see this, assuming that a, b are
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Abelian anyons in a root state. Since the mutual statis-
tics is given by DSab = exp[2πi(sa + sb − sa⊗b)], and
a, b, a ⊗ b are all bosons or fermions, non-trivial mutual
statistics can only be DSab = −1. Now consider two
cases: (1) one of a, b, say a, is a fermion, then by con-
densing a (choosing ac = a, mc = 2, sc = 1/2, tb = 1/2),
in the new topological order, the rank remains the same

but s(b,0) = sb +
t2b

2Mc
= sb + 1/8, which means (b, 0)

is an Abelian anyon but neither a boson nor a fermion.
By condensing (b, 0) again we can reduce the rank, which
conflicts with the “root” state assumption. (2) a, b are all
bosons. Still we condense a withmc = 2, sc = 0, tb = 1/2.
In the new topological order the rank is doubled but

s(b,0) = sb +
t2b

2Mc
= 1/16, which means further condens-

ing (b, 0) with m′
c = 0 the rank is reduced to 1/8, which is

again, smaller than the rank of the beginning root state,
thus contradictory.

Therefore, in the root states, Abelian anyons are bosons
or fermions with trivial mutual statistics. We also have
a straightforward corollary: all Abelian topological or-
ders have the same unique root state, which is the trivial
topological order. In other words, all Abelian topolog-
ical orders are in the same trivial non-Abelian family,
which resembles the noble gas family in the Periodic Ta-
ble. Thus, the non-Abelian families are indeed equivalent
classes up to Abelian topological orders.

To easily determine if two states belong to the same
non-Abelian family, it is very helpful to introduce some
non-Abelian invariants. One is the fractional part of the
central charge. Since the one-step condensation changes
the central charge by sgn(Mc) (see (8)), we know that
central charges in the same non-Abelian family can only
differ by integers. Another invariant is the quantum di-
mension. It is not hard to check that, in the one-step con-
densation, the number of anyons with the same quantum
dimension is also multiplied by |Mc|. The third invariant
is a bit involved. Note that in the one-step condensation,
if i has trivial mutual statistics with ac, ti = 0, then (i, 0)
in D have the same spin as i in C and the same mutual
statistics with (j,m), ∀m as that between i and j in C.
Therefore, the centralizer of Abelian anyons, namely, the
subset of anyons that have trivial mutual statistics with
all Abelian anyons (the anyons in black in Table I), is
the same within one non-Abelian family. These facts en-
able us to quickly tell that two states are not in the same
non-Abelian family.

Examples: Realizations of non-Abelian FQH states
were first proposed in Ref. 19 and 20. One of them is
[19, 21] Ψν=1({zi}) = [χ2({zi})]

2, where χk({zi}) is the
many-fermion wave function with k filled Landau levels.
The bulk effective theory is the SU(2)f−2 Chern-Simons
(CS) theory with 3 types of anyons and the edge has
c = 5/2 (see the Supplemental Material [16]). So the
state is one of the root state Nc = 3 5

2
in Table I. An-

other bosonic non-abelian FQH liquid at ν = 1 is [20]

Ψν=1 = A( 1
z1−z2

1
z2−z3

· · · )
∏

(zi − zj), whose edge has
c = 3/2. It is the state described by Nc = 3 3

2
which

belong to the same non-Abelian family as the 3 5
2
state

above. The experimentally realized ν = 5/2 FQH state
is likely to belong to this non-Abelian family [22–24].
A more interesting non-Abelian state (which can per-

form universal topological quantum computation [25]) is
Ψν= 3

2
({zi}) = [χ3({zi})]

2, whose edge has c = 21
5 . The

bulk effective theory is the SU(2)f−3 CS theory with 4
types of anyons [19, 21]. So the state is Nc = 4 21

5
, which

belongs to the same non-Abelian family as the state 2 26
5

in Table I (see the Supplemental Material [16], which
contains more examples of non-Abelian states and non-
Abelian families).
We like to remark that the topological orders studied in

this paper do not require and do not have any symmetry.
However, some c = 0 topological orders with a Z2 auto-
morphism i → i′ that changes the sign of spins si = −si′
can be realized by time-reversal symmetric states [26].
Conclusion and Outlook: In this letter we introduced
the hierarchy construction in generic topological orders,
which established a new equivalence relation: Two topo-
logical orders related by the hierarchy construction be-
long to the same “non-Abelian family”. This reveals in-
triguing new structures in the classification of topolog-
ical orders. Non-Abelian families are equivalent classes
up to Abelian topological orders. Topological orders in
the same non-Abelian family share some properties, such
as quantum dimensions and the fractional part of central
charges.
In particular we studied the “root” states, the states

in a non-Abelian family with the smallest rank. Other
states can be constructed from the root states via the
hierarchy construction. Thus, classifying all topological
orders is the same as classifying all root states, namely, all
states such that their Abelian anyons have trivial mutual
statistics. In other words, we can try to generate all
possible topological orders by constructing all the root
states, which can be obtained by starting with an Abelian
group G, extending its representation category Rep(G) or
sRep(Gf ) to a modular category[7, 8] while requiring all
the extra anyons being non-Abelian (which is referred to
as a non-Abelian modular extension). This is a promising
future problem and may be an efficient way to produce
tables of topological orders.
Although in this letter we focused on bosonic

topological orders with no symmetry (described by
modular categories), the construction also applies to
bosonic/fermionic topological orders with any symmetry
(described by certain pre-modular categories)[7, 8]. The
same argument goes for non-Abelian families and root
states with symmetries.
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