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We study the ac anomalous Hall conductivity σxy(ω) of a Weyl semimetal with broken time-
reversal symmetry. Even in the absence of free carriers these materials exhibit a “universal” anoma-
lous Hall response determined solely by the locations of the Weyl nodes. We show that the free
carriers, which are generically present in an undoped Weyl semimetal, give an additional contribu-
tion to the ac Hall conductivity. We elucidate the physical mechanism of the effect and develop a
microscopic theory of the free carrier contribution to σxy(ω). The latter can be expressed in terms of
a small number of parameters (the electron velocity matrix, the Fermi energy µ, and the “tilt” of the
Weyl cone). The resulting σxy(ω) has resonant features at ω ∼ 2µ which may be used to separate
the free carrier response from the filled-band response using, for example, Kerr effect measurements.
This may serve as diagnostic tool to characterize the doping of individual valleys.

Weyl semimetals (WSMs) are topologically-nontrivial
conductors in which the spin-nondegenerate valence and
conduction bands touch at isolated points in the Brillouin
zone, the so called “Weyl nodes” [1–10]. The electron
spectrum near the nodes is described by the chiral Weyl
Hamiltonian, see Eq. (3) below. The nodes occur in pairs
of opposite chirality [11]. The WSM phase requires either
time reversal (TR) or inversion (I) symmetry (or both)
to be broken [12]. Recently experimental evidence for
the WSM phase was reported in non-centrosymmetric
TaAs [13–18] and a range of other I-breaking materials
[19–24]. TR-breaking WSMs have not been found yet
but there are several promising candidates [25–28].

In the situation where the touching valence/conduction
bands are completely filled/empty, such TR-breaking
WSMs were shown to exhibit an anomalous Hall effect
(AHE) [4, 29–31] that is “universal” in the sense that it
only depends on the location of the nodes in the Bril-
louin zone (BZ). The theory of this contribution, below

referred to as σ
(band)
xy (ω), was extended to the ac regime

[32].
However, in a generic WSM, including all presently

discovered ones, free carriers of both electron and hole
type are present, see Fig. 1. In this work we develop
a microscopic theory of the ac anomalous Hall effect in
a generic WSM. We show that the free carriers present
near the nodal points provide a distinct contribution to

the AH conductivity σ
(free)
xy (ω).

This free carrier contribution has a resonant structure
at frequencies on the scale of the Fermi energy of the free
carriers. This feature should manifest itself in the spec-
trum of the magneto-optical Kerr effect and may find
application as a diagnostic tool for materials characteri-
zation of WSMs.

In order to separate the free carrier contribution from
that of the the filled bands (see Fig. 1),

σαβ(ω) = σ
(band)
αβ (ω) + σ

(free)
αβ (ω), (1)

we note that in optical response the external electric field
couples only electron states with equal quasimomentum.

FIG. 1: Projection of generic band structure with Weyl points
close to the chemical potential. Free carriers are localized to
electron (green) or hole (red) pockets near the Weyl nodes.

As a result the Kubo formula for the optical conductivity
may be expressed as a sum over quasimomenta

σ
(free)
αβ (ω) =

∑
p

σαβ(ω,p) [n+(p)− n−(p) + 1] , (2)

where n±(p) denotes the Fermi occupation function
in the conduction/valence band, and by σαβ(ω,p) we
denote the matrix elements and energy denominators.
The filled band contribution in Eq. (1) has the form,

σ
(band)
αβ (ω) =

∑
p σαβ(ω,p)× (−1).

Below we focus on the free carrier contribution,

σ
(free)
αβ (ω) in Eq. (2). Since the occupation factor in this

term, [n+(p)− n−(p) + 1], is nonzero only close to the

Weyl nodes, σ
(free)
αβ (ω) may be written as a sum of par-

tial contributions of individual Weyl nodes, σ
(n)
αβ (ω), see

Eqs. (8) and (9) below. The latter may be expressed
in terms of the Fermi energy in the node, µ, and the pa-
rameters of the Weyl Hamiltonian describing the electron
dynamics near the node,

H(p) = u · p σ0 + vijpiσj . (3)
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FIG. 2: Projection of the dispersion close to a generic Weyl
node for u||p̂z and vij = vf δij . The Fermi-surface forms an
ellipse centered away from the nodal point. The occupation factor
[n+(p)− n−(p) + 1] is non-zero whenever transitions at given
momentum are blocked. It is asymmetric in p for
pmin < p < pmax (above pmax all transitions are allowed, below
pmin all are blocked). Frequencies ωmin < ω < ωmax correspond to
transitions for which only part of the spectrum is Pauli blocked.

Here σµ are the Pauli matrices, the velocity matrix vij is
real symmetric, and the velocity u describes the tilt of the
energy cone [33]. The index n labelling the nodes has
been omitted in these expressions. The corresponding

energy spectrum, E±(p) = u ·p±
√∑

j(vijpi)
2 is shown

in Fig. 2.

Before proceeding with quantitative consideration we
discuss qualitatively the physical origin of the nonvan-

ishing anomalous Hall response σ
(free)
xy (ω). First we note

that a finite Hall conductivity of an individual Weyl node
is allowed by symmetry. It corresponds to the antisym-
metric part of the conductivity tensor, σαβ , and is pro-
portional to εαβγuγ . Here the tilt velocity u breaks the
time reversal symmetry of a given node, and the Levi-
Civita tensor εαβγ is provided by the chirality of the Weyl
node (which is given by χ = sgn(det v)). Although the
above argument applies to both time-reversal invariant
and noninvariant WSMs in the former the Hall contri-
butions of Weyl nodes related by TR symmetry cancel
each other. Indeed, the Hamiltonian of a TR partner
may be obtained from Eq. (3) by making the substitu-
tion u → −u. This does not change the chirality of the
node but changes the sign of the Hall response. In TR
breaking WSMs such a cancellation does not occur and
the Hall responses of individual nodes do not sum up to
zero. Similarly, the responses of nodes linked by inver-
sion symmetry generally add up as both u and χ change
sign.

It is useful to see how a nonvanishing free carrier Hall
response arises in the framework of Eq. (2). Note that
tilting the energy dispersion by u amounts to a mere
energy shift of the two-state system defined at each p
and thus affects neither the matrix elements nor the en-
ergy denominators, i.e. σαβ(ω,p) is independent of the
tilt. In the absence of u the only vector breaking time
reversal symmetry is the momentum p. Thus by the On-
sager symmetry principle, σαβ(ω,p) = σβα(ω,−p), the
Hall response must be odd in p. It might seem that
upon the integration over momentum this would give a
vanishing result [34], however this is not the case. The
occupation factor in Eq. (2) depends on the tilt velocity
u, which makes it asymmetric in p, see Fig. 2. As a re-
sult the momentum sum in Eq. (2) is nonzero. Physically
the nonvanishing Hall response of free carriers arises due
to asymmetric in p Pauli blocking of the filled band re-
sponse. In a similar fashion asymmetric blocking leads
to photocurrents in WSMs [35].

Note that the occupation factor is asymmetric in p if
and only if the node is tilted and the Fermi energy does
not lie exactly at the nodal point. It is asymmetric in
the region of momenta p ∈ [pmin, pmax] with pmin/max =
|µ|/vf (1±U) (here U is the magnitude of the tilt velocity
in units of the Fermi velocity and for simplicity vij =
χvfδij).

Let us now proceed with quantitative consideration.
For brevity we set ~ = c = 1 in intermediate steps. The
Kubo formula relates the optical conductivity to the re-
tarded current-current correlation function

σαβ(ω) =
i

ω
ΠRet
αβ (ω). (4)

The retarded correlator ΠRet
αβ (ω) is obtained from the

Matsubara current-current correlation function

Παβ(iωn) =
T

V

∑
m,p

tr
[
jαG(iεm+ iωn,p)jβG(iεm,p)

]
(5)

by analytic continuation to real frequencies, iωn → ω +
i0 = ω+. In Eq. (5) T denotes temperature, V volume
and the trace is taken over the spinor indices. The Mat-
subara Green function corresponding to Hamiltonian (3)
is

G(iεn,p) =
(iεn − u · p)σ0 + vijpiσj

(iεn − E+(p)) (iεn − E−(p))
, (6)

and the current operator is given by

jα = − δ

δAα
H(p− eA) = e(uασ0 + vαjσj). (7)

To simplify notation we rescale momenta, lj = vijpi, and

the tilt velocity, χUi = v−1ij uj , where we have factored out
the chirality in order to consider the effect of tilt and chi-
rality separately. Performing the frequency summation
in Eq. (5) and subtracting the filled band contribution as
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explained above, we obtain the free carrier contribution
to the conductivity from an individual node,

σ
(n)
αβ (ω) =

∑
l

σ
(n)
αβ (ω, l)

[
n
(n)
+ (l)− n(n)− (l) + 1

]
. (8)

In this expression n
(n)
± (l) = nf (χl ·U ± l − µ) and

σ
(n)
αβ (ω, l) =

1

V

2ie2vαivβj
|det v|

2l2δij − 2lilj + iω+εijklk
ωl(4l2 − ω2

+)
,

(9)
where the sum now is over rescaled momenta l. The sym-
metry arguments discussed above are manifest in this ex-
pression: the Hall (antisymmetric in αβ) response arises
from the term ∝ εijk, and exists only if U is nonzero,
since otherwise the occupation factor is symmetric under
lk → −lk. Changing l→ χl we observe that only the an-
tisymmetric term is sensitive to the chirality of the node.
The same applies to change of sign of the tilt velocity.
Moreover, we see that Hall response arises even for the
isotropic velocity matrix vij ∝ δij ; the anisotropy of vij
merely amounts to anisotropic rescaling. Therefore the
contribution of valley n to the optical conductivity tensor
may be expressed in the form

σ
(n)
αβ (ω) =

vαi
vf
σ̃
(n)
ij (ω)

vjβ
vf

, (10)

where v3f = |det v| and σ̃
(n)
ij (ω) is the response corre-

sponding to the isotropic case, vij = χvfδij . It is use-
ful to note that after rescaling U is the only available
vector breaking rotational invariance in the single-node
problem. This allows to express the components of σ̃ in
terms of universal functions f (n) depending only on the
parameters of node n such that

σ̃
(n,Hall)
ij (ω) = εijkÛkf

(n)
Hall(ω), (11a)

σ̃
(n,⊥)
ij (ω) =

(
δij − ÛiÛj

)
f
(n)
+ (ω), (11b)

σ̃
(n,‖)
ij (ω) = ÛiÛjf

(n)
− (ω), (11c)

where Û = U/U, U = |U |. We assume U < 1, i.e. only
consider type-I WSMs [36]. As we wish to obtain closed
form solutions we take the zero temperature limit. For
details of the calculation see the supplemental material.
Restoring ~ we obtain for the frequency dependence of
the free carrier conductivity of an individual node n

f
(n)
Hall(ω) =

−χsgn(µ)e2

16π2~vfU2
×[

|µ|(L1 + 2U) +

(
1− U2

4
ω +

|µ|2

ω

)
L2

]
(12)

Im{fHall
(n)

}

Re{fHall
(n)

}

Im{Σ
n=1
4
f Hall
(n)

}

0 1 2 3

0

ωmin ωmax

ω/μ

f H
al
l

(n
)
(ω

)

FIG. 3: Frequency dependence of the free carrier AH
conductivity for a single node with U = 0.2 and µ = vf = 1. The
imaginary part (solid orange) is non-zero only in the intervals
ωmin < ω < ωmax. The width of this region is determined by tilt
and chemical potential. The dot-dashed red graph shows the
response of a system of four nodes with µ = (0.5, 0.9, 1,−1.4) and
tilts U = (0.3, 0.05, 0.2, 0.05). The nodes with µ = 0.9, 1.4 have
χ = −1. Here, charge neutrality was ignored for simplicity.

and

f
(n)
± (ω) =

ie2

16π2~vfU3

{
|µ|2a±
ω

[
4U(2 + a±U

2)

3(1− U2)
+ L1

]
+ω

[
U3

3
L3 + a±

(
1

12
± U2

4

)
L1

]
+a±

[(
1± U2

) |µ|
2

+
2|µ|3

3ωω+

]
L2

}
. (13)

In Eqs. (12) and (13) we introduced the notation a± =
−1/2± 3/2 and

L1 = ln
ω2
min − ω2

+

ω2
max − ω2

+

, (14a)

L2 = ln
(ω+ + ωmin)(ω+ − ωmax)

(ω+ − ωmin)(ω+ + ωmax)
, (14b)

L3 = ln
ω2
min − ω2

+

−ω2
+

+ ln
ω2
max − ω2

+

−ω2
+

, (14c)

and also ωmin/max = 2|µ|/(1 ± U) for the limiting fre-
quencies of partially blocked transitions, c.f. Fig. 2.

Equations (10) - (14) are the central results of this
paper [37]. In particular Eq. (12) gives the frequency
dependence of the free carrier contribution to the AHE,
which is depicted in Fig. 3. The imaginary part arises
from real optical transitions that are asymmetrically
Pauli-blocked. It exists only in the frequency interval
ωmin < ω < ωmax. The real part exhibits a resonant
structure at frequencies ±ωmin/max. The red and dot-
dashed graph shows the imaginary part of the free carrier
Hall conductivity in a four node system given by the sum
of individual node contributions.
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FIG. 4: Kerr spectra for a generic TR broken system of four
nodes not related by symmetry. Charge neutrality is enforced.
The AH response is modelled using the free carrier contribution

plus the dc universal contribution σ
(u)
xy = e2K/2πh. We used

parameters ε∞ = 5 and α′ = e2/~vf = 1. Each node contributes
a peak to the spectrum. The features at low frequency are due to
the plasmon mode. As long as ωp < ωmin for the lowest lying free
carrier resonance and the universal component is small, the free
carrier features are mostly determined by the imaginary part of

the Hall conductivity. Large σ
(u)
xy suppresses the peaks but kinks

remain at ω = ωmin/max.

A nonzero ac Hall conductivity gives rise to the Kerr
effect. It can be shown that the contribution of surface
arc states is small in v/c [38]. As a result the Kerr effect is
described by the bulk optical conductivity. In particular,
in the polar Kerr effect geometry the angle of rotation of
the polarization plane of reflected light is given by [39]

θ(ω) = Im

[
4πσxy(ω)

ω
√
εxx(ω)(εxx(ω)− 1)

]
. (15)

Below we discuss the implications of our results for
the Kerr effect. For simplicity we assume the nodes to

be isotropic, v
(n)
ij = χ(n)vnδij , and all tilts to lie along the

z-axis. Then, the full Hall conductivity that enters the

Kerr response is σxy(ω) = σ
(u)
xy +

∑
n σ

(n)
xy (ω) with σ

(n)
xy (ω)

given by Eqs. (10) to (12). Note that the frequency de-
pendence of the band contribution has been neglected

and only the dc universal component σ
(u)
xy = e2K/2πh

was kept, where K is the effective distance of nodes in
momentum space (see Refs. [4, 29] for details). This step
is justified in the supplemental material. The permittiv-
ity entering (15) is

εxx(ω) = ε(band)xx (ω) +
4πi

ω

∑
nodes n

σ(n)
xx (ω) (16)

with longitudinal free carrier conductivity of an individ-
ual node given by Eqs. (10) to (13).

Due to the gapless character of the electron spectrum

the filled band contribution to the permittivity ε
(band)
xx (ω)

has a logarithmic frequency dependence at low frequen-
cies of interest. Since this dependence arises from the low

energy electron excitations described by the Weyl Hamil-
tonian (3) it may be described in terms of the parameters
of the Weyl nodes. A consideration similar to that of the
free carrier contribution yields for isotropic valleys with
Fermi velocities vn

ε(band)xx (ω) = ε∞ +
e2

6π~
∑

nodes n

1

vn
ln

Λ2

−ω2
+

. (17)

The frequency cut-off Λ can be absorbed in the permit-
tivity of inert bands ε∞. For details see the supplemental
material.

Figure 4 shows a characteristic Kerr spectrum for
a WSM with four nodes. The presence of free car-
riers at node n leads to resonances in the Kerr angle
which are (skewly) centered around ω = 2µn with width
Unµn/(1 − U2

n). The sign of the peaks is given by the
product of chirality, projection of tilt along êz and the
sign of the chemical potential. The peak at low frequen-
cies occurs at the plasmon frequency ωp that corresponds
to vanishing permittivity. If the plasmon response occurs
at larger frequencies than free carrier features both free
carrier and plasmon peak will remain present but change
in shape. As is clear from the graphs, the universal con-
tribution to the AHE merely modifies the shape of the
resonant features in the frequency dependence of the Kerr
angle, while their locations are determined purely by the
free carrier contribution. This allows to experimentally
determine the doping level of individual valleys.

Note that extrapolation of our result for f
(n)
Hall(ω) to the

dc limit ω → 0 gives a finite result: assuming isotropy
and u ‖ êz,

σ(n)
xy (0) = f

(n)
Hall(0) =

−χe2µ
8π2~vf

(
2

U
+

1

U2
ln

[
1− U
1 + U

])
.

This result is purely formal, as in the presence of im-
purities our results only apply in the collisionless regime
ωτ � 1, where τ is the transport mean free time. Never-
theless, in the dc regime ωτ � 1 the free carrier contribu-
tion to the AHE should remain finite. For high mobility
conductors it is expected to be dominated by skew scat-
tering of Weyl fermions and may be estimated as

σ(n,sk)
xy ∝ χ τ

2

τsk

e2µ2η(U)

~2vf
.

Here 1/τsk is the skew scattering rate. Note that skew
scattering is allowed by symmetry. For example, chiral-
ity allows to write the intranode skew scattering cross-
section in the form wkk′ ∝ u · (k × k′). It arises only
beyond the lowest Born approximation for the scatter-
ing amplitude. In this respect it is worth noting that in
Ref. [34] the effects of energy cone tilt on Pauli blocking
and impurity skew scattering were not considered. This
resulted in a vanishing free carrier contribution to the
anomalous Hall conductivity.

In conclusion, we note that the developed microscopic
theory of ac anomalous Hall conductivity, and its im-
plications for the magneto-optical Kerr effect, apply not
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only to WSMs with spontaneously broken TR symme-
try, but are also relevant for systems in which the WSM
phase is “created” [40] by application of a magnetic field
to TR-invariant Dirac semimetals. We would also like
note that the diagonal components of the conductivity
tensor have features at ω ∼ 2µ. Thus, in TR-invariant
Weyl semimetals the doping levels of individual valleys
may be characterized by measuring the frequency depen-
dence of the surface impedance.
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