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Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of
composition and structure on relaxation remains poorly understood. Herein, relying on accelerated
molecular dynamics simulations and topological constraint theory, we investigate the relationship
between atomic topology and stress-induced structural relaxation, by taking the example of creep
deformations in calcium–silicate–hydrates (C–S–H), the binding phase of concrete. Under constant
shear stress, C–S–H is found to feature delayed logarithmic shear deformations. We demonstrate
that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized
by the simultaneous absence of floppy internal modes of relaxation and eigen stress. This suggests
that topological nano-engineering could lead to the discovery of non-aging materials.

Out-of-equilibrium systems – e.g., quenched glasses or
jammed granular materials – tend to spontaneously re-
lax over time towards more stable equilibrium states. In
terms of energy landscape, such relaxation can be de-
scribed as a succession of "jumps" between energy basins
(local energy minima) through pathways (modes of re-
laxation) [1], wherein the temperature and height of the
energy barriers define the relaxation kinetics [2]. On the
other hand, starting from a stable equilibrium state, ex-
ternal stress can deform the energy landscape, place the
system in an out-of-equilibrium state, and, thereby, in-
duce relaxation [3, 4].

Relaxation can result in delayed variations of volume
or shape. This behavior is exemplified by creep, i.e.,
the delayed time-dependent strain shown by a material
under constant load. Although creep can affect, among
others, metals, ceramics, or minerals [5], it is especially
pronounced in concrete, even at ambient temperature,
and can lead to the failure of structures [6]. In addition,
glasses, archetypical out-of-equilibrium systems, can fea-
ture long-term volume relaxation after being quenched,
a behavior known as the "thermometer effect" [7, 8].

Although the role of the composition and structure of
atomic networks in controlling the propensity for relax-
ation remains poorly understood, specific glass composi-
tions have been reported to feature little, if any, relax-
ation over time after quenching. This has been explained
within the framework of topological constraint theory
(TCT) [9–12]. Following Maxwell’s study on the stabil-
ity of mechanical trusses [13], TCT describes the rigid-
ity of atomic networks, which can feature three distinct

states: (1) flexible, having internal degrees of freedom
called floppy modes [14] that allow for local deformations,
(2) stressed–rigid, being locked by their high connectiv-
ity, and (3) isostatic, the optimal intermediate state (see
Fig. 3a). The isostatic state is achieved when the num-
ber of constraints per atom, nc, comprising radial bond-
stretching (BS) and angular bond-bending (BB), equals
three, the number of degrees of freedom per atom. Com-
positions characterized by an isostatic network have been
found to exist inside a window [15], located between the
flexible (nc < 3) and the stressed–rigid (nc > 3) compo-
sitions, known as the Boolchand intermediate phase, and
show some remarkable properties such as a stress-free
character [16, 17], space-filling tendency [18], anomalous
dynamical and structural signatures [19, 20], and max-
imum resistance to fracture [21]. Interestingly, isostatic
networks have been shown to feature limited relaxation
phenomena [22].

Herein, relying on accelerated molecular dynamics
(MD) simulations and TCT, we investigate the creep
deformations under constant shear stress of calcium–
silicate–hydrates (CaO–SiO2–H2O, or C–S–H), the phase
that binds and controls the properties of concrete [23].
We show that, in analogy with glass relaxation, isostatic
C–S–H compositions feature a low propensity for relax-
ation. In contrast, flexible and stressed-rigid networks
show significant creep deformations, on account of the
presence of low energy floppy modes of deformation and
eigen stress, respectively.

C–S–H is a complex multi-scale phase that forms upon
the hydration of cement [23]. In concrete, it is found as



2

a porous gel, made of polydisperse grains of around 5
nm each. [24–26] Inside each grain, C–S–H takes the
form of a layered calcium–silicate atomic network that is
poorly crystalline and of variable stoichiometry, with a
Ca/Si molar ratio between around 1.0 and 2.0 [23]. In
the present work, we rely on the C–S–H models devel-
oped by Pellenq et al. [27, 28]. The atomic models of
C–S–H, with various compositions (different Ca/Si mo-
lar ratios), were obtained by introducing defects in an 11
Å tobermorite configuration [29] following a combinato-
rial approach [28]. This initial crystal consists of pseudo-
octahedral calcium oxide sheets, surrounded on each side
by silicate chains. These negatively charged calcium–
silicate layers are separated from each other by both
dissociated and undissociated interlayer water molecules
and charge-balancing calcium cations. Starting from this
structure, the Ca/Si ratio is gradually increased from
1.0 to 1.9 by randomly removing SiO2 groups. The in-
troduced defects offer possible sites for the adsorption
of extra water molecules, which was performed via the
Grand Canonical Monte Carlo method, ensuring equi-
librium with bulk water at constant volume and room
temperature. Eventually, the ReaxFF potential [30], a
reactive potential, was used to account for the chem-
ical reaction of the interlayer water with the defective
calcium–silicate sheets. The use of a reactive potential
allows us to observe the dissociation of water molecules
into hydroxyl groups. The details of the methodology
used for the preparation of the models, as well as mul-
tiple validations with respect to experimental data can
be found in Ref. [28]. In particular, this model has
been shown to offer an excellent agreement with nano-
indentation measurements of modulus and hardness [28],
which renders it attractive to study creep. In this study,
we rely on the ReaxFF potential, using a timestep of 0.25
fs [30]. The samples were systematically relaxed to zero
stress at 300 K before any further characterization.

We now focus on the methodology used to simulate
creep. Traditional MD simulations are usually limited
to a few nanoseconds, which renders them unpractical to
describe long-term relaxation at low temperature. On
the other hand, kinetic Monte-Carlo simulations offer
an attractive alternative to perform simulations up to
a few seconds, but their application to silicate hydrates
is challenging, e.g., due to the high mobility of the wa-
ter molecules, which results in a huge number of small
energy barriers to compute. Since a direct simulation of
the stress-induced relaxation dynamics of C–S–H is, at
this point, unachievable, we applied a method that has
recently been introduced to study the relaxation of sili-
cate glasses [31]. In that method, the system is subjected
to small, cyclic perturbations of isostatic stress ±∆σ. At
each stress cycle, a minimization of the energy is per-
formed, with the system having the ability to deform
(shape and volume) in order to reach the target stress.
Note that the observed relaxation does not depend on the
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FIG. 1. Shear strain (left axis) and potential energy per atom
(right axis) with respect to the number of loading/unloading
cycles. The inset shows the shape of the applied shear stress.

choice of ∆σ, provided that this stress remains sub-yield
(see Supplemental Material) [31]).

This method mimicks the artificial aging observed in
granular materials subjected to vibrations [32]. Indeed,
small vibrations induce a compaction of the material,
that is, they make the system artificially age. On the
other hand, large vibrations randomize the grain arrange-
ments, which decreases the overall compactness and,
therefore, make the system rejuvenate. Similar ideas,
relying on the energy landscape approach [4], have been
applied to amorphous solids, based on the fact that small
stresses deform the energy landscape locally explored by
the atoms. This can result in the removal of some energy
barriers existing at zero stress, thus allowing atoms to
jump over them in order to relax to lower energy states.
This transformation is irreversible as, once the stress is
removed, the system remains in its "aged" state. In con-
trast, large stresses move the system far from its initial
state, which eventually leads to rejuvenation, similar to
thermal annealing [3]. Here, in order to mimick devia-
toric creep deformation, we add to the previous method
a constant shear stress τ0, such that ∆σ < τ0 (see the
inset of Fig. 1).

As shown in Fig. 1, the application of stress cycles
results in the gradual increase and decrease of the shear
strain and potential energy, respectively. This confirms
that, upon creep, C–S–H relaxes towards lower energy
states. Note that, although the system is free to de-
form upon relaxation, no significant variations of volume
are observed. This supports the fact that concrete creep
is mostly deviatoric. As shown in Fig. 2a, we observe
that, when subjected to shear stresses τ0 of different in-
tensities, C–S–H presents a shear strain γ that increases
logarithmically with the number of cycles N . Such a log-
arithmic trend is in agreement with experimental obser-
vations [33], which suggests that the creep deformation
can be expressed as:
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γ(N) = (τ0/C) log(1 +N/N0) (1)

where, N0 is a fitting parameter analogous to a relaxation
time and C is the creep modulus, which is the inverse of
the creep compliance S and can be determined by fitting
the computed shear strain with respect to the number
of stress cycles (see Fig. 2a). Note that we are unable
to ensure that the accelerated microscopic evolution of
the system observed herein is fully equivalent to an un-
biased newtonian evolution of the system. Hence, the
stress perturbation cycles cannot be mapped onto real
time. However, we expect average properties, e.g., strain
and potential energy, which are not very specific to the
microscopic details of the system, to follow a realistic
evolution (see Supplemental Material).

Interestingly, we find that the computed shear strains
are proportional to the applied constant shear stress τ0
(see Fig. 2a). As such, C does not depend on the applied
stress and, thereby, appears to be an intrinsic property of
the material. We observe, however, that this holds only
as long as the applied stress remains lower than the yield
stress of the sample [34]. Note that, as our simulation
do not consider any porosity, the computed values of C
can only be compared with experimental values extrap-
olated to zero porosity. As shown in the inset of Fig. 2a,
the obtained C (∼ 450 GPa) is in very good agreement
with nano-indentation data [33], extrapolated to a pack-
ing fraction of one. To the best of our knowledge, this
is the first time that the creep propensity (indicated by
the creep modulus) of cementitious, or other viscoelastic
materials has been successfully reproduced by atomistic
simulation. We note that such relaxation does not in-
volve the formation or breakage of atomic bonds, but
rather some structural reorganizations at the medium-
range order.

Further, to better understand the relationship between
composition and stress relaxation propensity, the same
approach was used for other C–S–H compositions. As
shown in Fig. 2b, the computed C values show a non-
linear evolution with Ca/Si, which manifests in the form
of a broad maximum around Ca/Si = 1.5, with a creep
modulus around 80 % higher than that obtained for
Ca/Si = 1.7. Note that the large error bars prevent us
from clearly determining if the maximum of C occurs
within a compositional window or at a given composition
threshold. Such a non-linear behavior is very different
from those of indentation hardness and creep modulus,
as both of them decrease monotonically with Ca/Si [28].
Once again, the obtained C values are in excellent agree-
ment with micro-indentation data extrapolated to zero
porosity [35], which strongly suggests that the present
method offers a realistic description of the creep of C–S–
H at the atomic scale.

We now investigate how the atomic topology controls
the propensity for creep relaxation. As shown in Fig.
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FIG. 2. (a) Delayed shear strain (for Ca/Si = 1.7) under
constant shear stresses of 1, 2, and 3 GPa. The dashed lines
indicate logarithmic fits following Eq. 1. The inset shows
the creep modulus C with respect to the packing fraction φ
obtained from nanoindentation [33]. The values are fitted by
a power law C = A(φ − 0.5)α and extrapolated to φ = 1
to be compared with the value obtained by the present sim-
ulations. (b) Computed creep modulus C with respect to
the Ca/Si molar ratio. The values are compared with ex-
perimental measurements obtained by micro-indentation [35]
and nano-indentation [33], extrapolated to zero porosity. The
grey area indicates the extent of the compositional window in
which a maximum resistance to creep is observed.
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Number of topological constraints per atom nc in C–S–H with
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3c, C–S–H has been reported to feature a composition-
induced rigidity transition at Ca/Si = 1.5 [36], being
stressed-rigid (nc > 3) at lower Ca/Si and flexible (nc <
3) at higher Ca/Si. As such, as shown in Fig. 3d, isostatic
compositions (nc ' 3) feature the lowest propensity for
creep, that is, the lowest creep compliance. To the best of
our knowledge, these results constitute the first quanti-
tative evidence of a link between atomic topology (hence
composition) and resistance to stress relaxation. Our re-
sults also suggest that the compositional window (1.3 <
Ca/Si < 1.53) is analogous to a rigid but free of eigen
stress Boolchand intermediate phase [18], although the
large error bars prevent us from ensuring that this iso-
static state is achieved within a compositional window or
at a single threshold.

Interestingly, isostatic glassy networks have been
shown to behave largely reversibly with stress, that is,
to show nearly complete elastic recovery after compres-
sion [37]. As such, to further demonstrate the analogy
between isostatic C–S–H composition and glasses belong-
ing to a Boolchand intermediate phase, the C–S–H sam-
ples were hydrostatically compressed under 10 GPa dur-
ing 1 ns and subsequently relaxed at zero pressure to
assess the extent of loading-induced permanent densifi-
cation. As shown in Fig. 3d, we observe that isostatic
C–S–H compositions indeed show the lowest unrecovered
volume after loading/unloading. This feature can be ex-
plained as follows. (1) Thanks to their internal floppy
modes, flexible systems can easily undergo irreversible
deformations during loading. This enables irreversible
structural deformations upon loading. (2) In contrast,
stressed-rigid systems are completely locked. Once com-
pressed, the high connectivity prevents the full relaxation
of the accumulated internal stress, so that the network
remains permanently densified after unloading. (3) Even-
tually, isostatic systems, i.e., rigid but free of eigen stress,
simply adapt with pressure in a reversible way.

Our results can be understood within the energy land-
scape framework. The energy landscape of an atomic
network is determined by the densities of bond and floppy
mode, wherein the bond density tend to induce the cre-
ation of energy basins, whereas the floppy mode density
leads to the formation of channels between the basins.
(1) On account of their internal floppy modes, flexible
atomic networks feature some low energy modes of inter-
nal reorganization to relax any loading-induced internal
stress. Such floppy modes extend the number of energy
channels, thereby enhancing the propensity for creep. (2)
In contrast, stressed-rigid atomic networks show some in-
ternal eigen stress [16, 17] as all constraints cannot be
simultaneously satisfied. This eigen stress induces an in-
stability of the network and, therefore, acts as a driving
force for phase separation or devitrification in glasses [11].
Such a driving force facilitates jumps between the basins,
which, again, extends the possibilities of creep relaxation.
In addition, the simulation method of creep implemented

herein suggests that creep can be seen as a succession of
small cycles of stress. Hence, the fact that both flexible
and stressed-rigid networks feature low elastic recovery
after loading explains their gradual deformation during
creep. (3) Finally, isostatic networks, which are free of
both internal modes of deformation and eigen stress, si-
multaneously do not feature any barrier-less channel be-
tween energy basins or eigen stress-induced driving force
for relaxation. As such, such optimally constrained net-
works feature the lowest propensity for stress relaxation
and creep.

Altogether, these results highlight the strong relation-
ship between atomic topology and propensity for relax-
ation and suggest that the relaxation of C–S–H is similar
to that of structural glasses. Indeed, we observe a striking
similarity of the creep compliance data reported herein
to temperature- and pressure-induced relaxation in Ge–
Se glasses [16, 38]. This suggests that C–S–H features
a Boolchand intermediate phase that is free of floppy
modes and eigen stress. These isostatic phases are there-
fore expected to show weak aging (at constant porosity).
Beyond concrete creep, being able to understand, predict,
and control the relaxation and aging of materials could
improve the understanding of memory encoded materials
[39] or protein folding [40]. This also suggests that topo-
logical nano-engineering is a valuable tool to explore new
compositional spaces, for the discovery of new materials
featuring unusual properties.
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