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Von Neumann’s classic “multiplexing” method is unique in achieving high-threshold fault-tolerant
classical computation (FTCC), but has several significant barriers to implementation: i) the ex-
tremely complex circuits required by randomized connections, ii) the difficulty of calculating its
performance in practical regimes of both code size and logical error rate, and iii) the (perceived)
need for large code sizes. Here we present numerical results indicating that the third assertion is
false, and introduce a novel scheme that eliminates the two remaining problems while retaining a
threshold very close to von Neumann’s ideal of 1/6. We present a simple, highly ordered wiring
structure that vastly reduces the circuit complexity, demonstrates that randomization is unneces-
sary, and provides a feasible method to calculate the performance. This in turn allows us to show
that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and
under a standard error model a unitary implementation realizes universal FTCC with an accuracy
threshold of p < 5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key com-
ponent in realizing measurement-free protocols for quantum information processing. In view of this
we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based
feedback process in which the asymptotic error probabilities for the measurement and feedback are
(32/63)p ≈ 0.51p and 1.51p, respectively.

PACS numbers: 03.67.-a, 03.67.Pp, 03.65.Ta, 03.65.Aa

The problem of performing classical computing reli-
ably with unreliable logic gates is referred to as fault-
tolerant classical computation (FTCC). The first method
for realizing FTCC was devised by von Neumann, who
called it multiplexing [1]. It achieves what may be
the highest possible error threshold (the maximum sta-
ble component-wise error rate), but has hitherto been
viewed as impracticable. This is due to an apparent
need for high redundancy (number of fundamental com-
ponents required to construct a noise-free logical gate),
the need to continually connect and reconnect bits “at
random” at a potentially large spatial separation, and
the difficulty of both analytically calculating the perfor-
mance for moderate code sizes and simulating the per-
formance in the low-error regimes required for reliable
computation [1–9]. The field of probabilistic cellular
automata was partially motivated by addressing the sec-
ond problem, but has not to-date produced a complete
and feasible FTCC scheme [10–21]. A second method
for FTCC was developed more recently in the context of
quantum computing, and involves “concatenating” error-
correction codes and logic gates [22–46]. However, the
concrete FTCC schemes developed using concatenation
require high redundancy and connections between widely
separated code bits, and have not to-date achieved the
high thresholds of multiplexing schemes [47, 48].

We are interested in FTCC here primarily because of
its central role in the question of the importance of mea-
surements in realizing physical processes and control pro-
tocols. From a fundamental point of view, measurements
play no special role in physical processes: all dynamics

generated by measurement and feedback processes (in-
cluding those involving post-selection [49]) can be repro-
duced by unitary evolution [50]. Consequently the util-
ity of measurements in any physical protocol arises only
from technological constraints. For fault-tolerant quan-
tum computation (FTQC), in which all high-threshold
schemes to-date employ measurements [29, 38, 44, 51],
the constraint is a fixed error-probability p for all quan-
tum gates and measurements.

Interest in measurement-free (or measurement-light)
quantum computing [52–56] is motivated by the fact that
implementing large numbers of measurements on many
qubits requires an additional technological overhead be-
yond that of unitary circuits. To this end schemes have
been devised in which measurements can be noisy and/or
slow [52, 53], and quite recently automata-based meth-
ods were introduced for eliminating both measurements
and the high processing overhead involved in correcting
surface codes [55, 56]. Here our purpose is to determine
the ability of unitary circuits to perform the functions of
arbitrary measurement procedures.

For the purposes of FTQC (or any quantum process
subjected to errors) the physical addition provided by
measurements is amplification: measurements are de-
fined as producing a result that can be processed on a
classical digital computer. The resulting error-free clas-
sical processing is the sole advantage of measurements.
As a result the question of the importance of measure-
ment to quantum processes is intimately related to how
well mesoscopic gates (those with error p) can perform
such error-free classical processing, and thus to the fun-
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damental limits of FTCC.

Our first main result is an explicit scheme for FTCC
with unitary gates that largely solves the long-standing
problems with von Neumann’s multiplexing method,
while achieving almost the same high threshold. We then
apply our FTCC protocol to the problem of using uni-
tary circuits to reproduce a general measurement and
feedback process. Our second main result is that, with a
threshold of p = 2.8%, unitary circuits can do this and
achieve effective measurement and feedback errors close
to p. It should be noted that this result does not imply
alone that a given measurement-based protocol can be re-
placed by a unitary one; additional technological factors,
such as the time taken by the processing circuits, may
also play an important role in an implementation. This
result does show that unitary circuits can effectively real-
ize high-fidelity measurements, and that perfect classical
processing within quantum mesoscopic circuits is entirely
feasible. They also furnish a new tool for understanding
the power of unitary protocols.

Before we present our error-correction scheme, it is
worth discussing the key issues with von Neumann’s
method in more detail. Von Neumann’s scheme uses a
repetition code, and corrects errors in the code by ap-
plying a “majority counting” gate to triples of code bits.
The output of this gate is a single bit whose value is
that of the majority of the three input bits. The out-
put bit is then copied to produce three bits that are the
corrected versions of the input bits. As noted above,
one of the primary problems with the scheme is the need
to reduce correlated errors by randomly selecting triples
across multiple repetitions of the error-correction. This
virtually prohibits the use of fixed wiring for the gate
interconnections due to the complexity of the resulting
circuits. Furthermore, an appeal to truly “random” fixed
connections in a computational circuit implies the need
for unique random reconnections at every correction step
of a computation of any length, something that is clearly
infeasible. A possible solution is to dynamically recon-
nect the gates at each correction step. While such a
process cannot be used in a fundamental theory of fault-
tolerance (the logic circuits that generate and store the
new connections will introduce further errors), it could
be used to implement FTCC with mesoscopic circuits by
using error-free macroscopic classical computers to per-
form the dynamical reconnection. Nevertheless, doing so
requires the significant additional overhead of complex
classical control circuits that allow any triple of code bits
to interact at any time. Our solution completes the the-
ory of multiplexing by eliminating randomness altogether
and allowing error correction to be performed by a small
set of fixed connections within the code, which are recy-
cled over a short sequence. We note that our scheme has
a single restriction over von Neumann’s, which is that
the code size must be a power of 3.

A further advantage we provide over randomized mul-

FIG. 1. Unitary constructions for the AMP and MAJ3 gates
defined in the text. The unitary version of AMP copies the in-
put qubit in the computational basis by applying a controlled-
not (CNOT) gate from this input to each of two qubits pre-
pared in the 0 state. The dashed box is the MAJ1 gate.

tiplexing is that with multiplexing the logical error rate
for moderate, realistic code sizes can be obtained only by
numerical simulation. This is problematic because i) a
simulation must generate at least tens of logical failures
to obtain any accuracy, and ii) for realistic computing
applications the error probability per logical bit must be
very small (e.g. 10−12). As a result the problem would
be challenging even for modern large-scale parallel ma-
chines.

We now describe our FTCC scheme, beginning with
the logic gates from which it is built:

Elementary 3-bit gates: We define a MAJ1 gate (the
name deriving from “majority”) as von Neumann’s 3-bit
majority counting gate, described above. We define a
gate AMP (short for “amplification”) that takes in one
bit and outputs three copies of it. Finally, we define
a gate MAJ3 as a MAJ1 that has three outputs, being
the usual MAJ1 output bit and two additional copies of
it. Thus the MAJ3 is a MAJ1 followed by an AMP. We
must be able to implement all these gates unitarily, so
we present explicit unitary versions of them in Fig. 1.
These unitary versions are shown in terms of CNOT and
Toffoli gates [57], but our error model treats the MAJ1
and AMP as elementary 3-bit unitary processes.

Error-correcting scheme: The logical value of bits on
which we wish to do computation are stored in a simple
repetition code of size 3n+1 where n is a non negative
integer called the level of the code. These bits can be ar-
ranged in a hypercube of dimension n+1 with side length
3. Error correction is now achieved by applying n paral-
lel MAJ3 gates along each of the n+ 1 axes in sequence.
This implies that the logical value can be equivalently
thought of as stored in a network of 3n MAJ3 gates that
interact sequentially along each axis of an n-dimensional
hypercube [49].

Performance of the error-correcting circuit: Our er-
ror model is defined by assigning, in the standard
way [29, 58], a total intrinsic error probability, p, to each
of the 3-bit unitary quantum gates MAJ1 and AMP. To
determine the performance of the error-correction circuit
we need the probability, ε, that there is an error in at
least one of the output lines of the MAJ3. Given the
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quantum error model, along with an additional error of
(2/3)p in each output to account for errors in the con-
necting wires and reset locations, we obtain a strict over-
estimate for ε to be (52/21)p ≈ 2.3p [59].) We need
to obtain the steady-state logical error probability, pss,
that is maintained by repeated applications of the cor-
rection circuit [60]. Calculating pss is non-trivial, how-
ever: straightforward simulations are impractical as dis-
cuss above. We are able to calculate pss for n = 2 and
n = 3 (codes with 27 and 81 bits, respectively) by map-
ping the error dynamics to a jump process that has only
3 effective states for n = 2 and 7 for n = 3 (details are
given in the supplemental material). In Fig. 2 we plot pss
as a function of ε for n = 2 and 3. We see from these plots
that the error decreases doubly-exponentially with n for
n = 2 and 3, and so we expect this to continue for larger
values of n. This shows a (gatewise) redundancy which
scales as 3n. In comparison, the redundancy for typical
concatenation schemes is 21n [47, 48]. We note that for
p = 0.4% and n = 3 one has pss = 1.5×10−11, thus small
values of n would likely suffice for applications. We ob-
tain a lower bound on the threshold for n = 3, shown
in Fig. 3a, to be ε ≈ 15%, very close to von Neumann’s
value of 1/6.

Performance of von Neumann’s multiplexing: In the
inset in Fig.2 we compare the performance of von Neu-
mann’s scheme to ours for a code size of 81 bits. As noted
above this calculation is limited to relatively large error
rates. We see that the performance of von Neumann’s
scheme oscillates about ours, and thus achieves similar
performance at high logical error rates. This provides
support for the conjecture that a randomized scheme
should perform at least as well as ours. Nevertheless,
one cannot merely extrapolate to small error rates, as
made especially clear by the oscillatory behavior.

Threshold for universal computation: Reliable MAJ1
and AMP gates can be used for universal computation.
A MAJ1 gate can be used as an AND or OR gate. An
AMP gate is composed of CNOTs, which can be used
as NOT gates and/or simulated line splitting. (Details
can be found in [1, 49].) The most complex construction
in our scheme is a coded MAJ1 gate, which consists of
a transversal application of MAJ1 gates on three coded
bits. The bitwise error rate in an error correcting network
at threshold is 1/2. Since the output of a three-input
computational gate is necessarily noisier than any one of
the inputs, we must have input errors less than 1/2, so
the component-wise threshold for universal computation
must smaller than 1/6. We recognize the threshold as the
basic error rate at which error rates in the outputs of the
MAJ1 gates are equal to 1/2. Taking into account the
steady-state bitwise error rate of our coded input bits,
we find the threshold for universal computation to be
p = 5.5%, or ε ≈ 12.7%[49].

Scaling of wire length with code size: A crucial is-
sue for fault-tolerant computation is how the wire length

FIG. 2. (Color online) (a) Solid line: the inverse of the logical
error probability, pss, for our error correction circuit with a 27-
bit code. Dashed line: 1/pss for a hypothetical concatenation
scheme with a threshold of 1/6 [49, 57]. (b) Solid line: 1/pss
for our scheme with an 81-bit code. Dashed lines: 1/pss for
hypothetical concatenation schemes with thresholds of 1/6
(upper line), and 1/7 (lower line). (No such concatenation
schemes are known to-date.) The inset shows the performance
of von Neumann’s scheme (dark line) against the new scheme
(light line) for 81 bits, for a range of ε in which it is feasible
to simulate.

required by the correction and computation circuits in-
creases with code size. Since it is reasonable to suggest
that fundamental error rates will increase exponentially
with the wire length (the distance between interacting
gates/bits), an error correction scheme must be compat-
ible with a compact wiring. Part of our solution is the
observation, noted above, that using our method code
sizes of no more than n = 4 (and likely n = 3) can be ex-
pected to be sufficient for any application. If we reroute
the wiring from the gate outputs to the inputs, the full
error correction circuit for n = 3 can be executed with a
cube of 27 MAJ3 gates. The rerouting need only span the
cube separately in each direction, giving a wire length of
2 (in units of the distance between adjacent gates). The
transversal AND gate for logic between coded bits, when
we place three code cubes in a row, requires wires of
length 3. For n = 4 there are also very efficient arrange-
ments. For a single coded bit we now require three cubes
of 27 MAJ3 gates for error correction. In Fig. 3b we show
that, arranging these three cubes in an “L” configuration,
the longest wires required for universal computation have
length 3

√
2. Only a moderate increase in overall distance

is therefore required to implement FTCC. One could al-
ternatively use an array of static qubits rather than static
gates. Under this architecture the error-correction cir-
cuits are similarly compact; each qubit need interact with
only 2(n+ 1) others [61].

Replacing measurements with unitary circuits: The
scheme for efficient FTCC presented above allows us to
obtain unitary circuits that perform the role of measure-
ment and feedback processes, and do so with very low
error rates. First, we note that the role of every mea-
surement in any physical protocol involves no more than
i) classical processing of the measurement result, and ii)
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FIG. 3. (a) The solid line is ε and the dashed line is the
resulting error probability for a code with n = 3. The point
at which these lines cross gives the threshold. (b) Here we
show the wiring lengths required for a code with n = 4 (243
bits). Each dot and circle represents a MAJ3 gate, so that the
squares indicate a cube of 27 MAJ3 gates (an n = 3, 81-bit
code) viewed from the top. The blue line encircles three of
these cubes that form a single n = 4 code block. The curved
solid lines are examples of wires required to implement an
AND gate on the two code blocks consisting of black dots.
The dashed lines are examples of wires required to implement
error correction on an individual code block.

at some point in the process, the use of the processed re-
sult to apply an operation to a quantum system. We can
assume the feedback operation is unitary without loss
of generality. We will also assume, without significant
loss of generality, that the quantum systems involved are
qubits.

To reproduce the action of a “black box” that im-
plements measurement and feedback our unitary circuit
must i) encode the qubits to be measured (the input
qubits) so that the classical information they contain can
be processed by our FTCC protocol, ii) perform the pro-
cessing, iii) use the processed information (the output
qubits), which is stored as a repetition code, to apply a
unitary gate to one or more “target” qubits. Steps i) and
iii) correspond to the processes of measurement and feed-
back, respectively. In step i), any error in the encoded
logical bits introduced by the encoding procedure is pre-
cisely equivalent to the measurement error. For step iii),
since we must use the state of a single qubit as a control
for the feedback operation, any error by which this qubit
deviates from the encoded logical output bit is simply an
additional probability of error over that of the feedback
applied by a classical device.

To encode the information stored in the computational
basis of a qubit we use a circuit consisting of AMP gates.
An AMP gate is used to make three copies of the initial
qubit in computational basis, and then each of these is
tripled again by feeding it into an AMP gate. By re-
peating this process we produce 3n+1 qubits that consti-
tute the bits of our repetition code. The key quantity of
interest is the probability, penc, that the resulting code
fails to correctly reflect the state of the bit contained
by the initial qubit (more precisely, the probability that
the code bits are left in a joint state that will fail to
be properly corrected by the error-correction circuits).

Calculating penc is a complex task, since we must take
into account the correlations formed between the code
bits/qubits during the encoding, as well as the action of
our error-correction procedure. We obtain, for n = 3, a
strict over-estimate of the encoding error as a 9th -order
polynomial in p, the full expression for which is given in
the supplemental material. The most important prop-
erty of penc is pcrit, defined as the value of p for which
penc = p, and for which penc < p whenever p < pcrit. The
encoding circuit for n = 3 has pcrit = 2.8%, and when
p � 2.8% the relationship is penc ≈ (32/63)p ≈ 0.51p.
This encoding error is precisely the measurement error
of the black box being simulated.

Once the classical information in the qubits input to
our unitary circuit has been encoded, it can be processed
essentially error-free using the error-correction and com-
putation methods present above. Thus it remains to ap-
ply an operation to m qubits that is conditional on the
processed information. The bits containing this informa-
tion are stored in our repetition code. To ensure that
the feedback correctly mimics the operation of feedback
applied by a classical controller we must take account
of the following: i) A classical controller is assumed to
be error-free, and so does not introduce errors that are
correlated between the m target bits; 2) the feedback op-
eration must be implemented with a single control qubit
for each target qubit because we are restricted to meso-
scopic circuits. Fortunately we can satisfy both demands.
Transversal CNOT operations can copy logical bits fault-
tolerantly. This can provide an ensemble of m logical
bits that are essentially correct (to the basic logical fail-
ure rate). Applying a series of MAJ1 gates to each logi-
cal bit (using n + 1 iterations for a code at level n), we
can provide m qubits with independent errors which ap-
proach (to first order in p) the individual failure rate of
the MAJ1 [53]. Using these qubits as the controls for the
feedback operations gives an error of (32/63)p ≈ 0.51p
over that of the classical feedback operation. Such an
additional error in the feedback appears to be a neces-
sary consequence of the use of mesoscopic circuits for this
purpose.

Here we have presented a scheme for fault-tolerant clas-
sical computation that significantly outperforms all pre-
vious schemes. In doing so we have shown that multi-
plexing neither requires randomization, nor large code
sizes as have previously been thought. We have used this
new scheme to show that unitary mesoscopic circuits can
perform all functions of measurement with errors that
remain very close to p.
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