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We investigate cat codes that can correct multiple excitation losses and identify two types of
logical errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum
back-action from the environment. We show that selected choices of logical subspace and coherent

amplitude significantly reduce dephasing errors.

The trade-off between the two major errors en-

ables optimized performance of cat codes in terms of minimized decoherence. With high coupling
efficiency, we show that one-way quantum repeaters with cat codes feature a boosted secure commu-
nication rate per mode when compared to conventional encoding schemes, showcasing the promising
potential of quantum information processing with continuous variable quantum codes.

An outstanding challenge for quantum information
processing with bosonic systems is excitation loss, which
can be modeled as a lossy bosonic channel (LBC) [1, 2].
To suppress excitation loss, conventionally the approach
is to consider discrete variable (DV) encodings [3-8] that
use physical qubits (qudits) realized with a single excita-
tion distributed over two (multiple) bosonic modes and
standard qubit- (qudit-) based quantum error correction
(QEC). Such DV encoding schemes usually require a con-
siderable number of bosonic modes to encode one logical
qubit (qudit). In contrast, continuous variable (CV) en-
coding schemes deploy the Hilbert space of higher ex-
citations, enabling single-mode based QEC against loss
errors. The resulting mode-efficiency can potentially lead
to high storage-density quantum memories and boost the
secure communication rate per mode for long distance
quantum communication [9-15].

Cat codes [2, 16, 17], among other single-mode CV
schemes [18, 19|, have been proposed for correcting ex-
citation loss. With the rapid development of quantum
control [20-22] and high-fidelity quantum non-demolition
readout [23-25], QEC with cat codes has recently been
demonstrated to reach the break-even point in supercon-
ducting circuits [26]. These advances have opened up a
new era of CV quantum information in which states can
be stored and manipulated for a duration longer than the
intrinsic coherence time of the constituent modes.

Cat codes are based on superpositions of coherent
states. Qualitatively it is known that a proper choice
of coherent amplitude « is essential for their QEC per-
formance: A large « increases the probability of uncor-
rectable excitation loss while a small « leads to significant
overlap between neighboring coherent components. Yet,
to date, the optimal choice of o and hence the optimal
QEC capability of cat codes have remained unquantified.
In this Letter, we investigate cat codes that encode a
logical qubit in superpositions of 2d (d > 2) coherent
components and can correct up to d — 1 excitation losses
[16, 17]. We quantify the two major types of errors as-
sociated with the encoding: the logical bit-flip error due
to finite capability of correcting losses, and the logical
dephasing error induced by back-action from the envi-

ronment. The analysis reveals non-trivial choices of code
parameters that significantly reduce the back-action and
balance the two logical errors. Using parameters yielding
minimum decoherence, we analyze the performance of cat
codes in one-way quantum repeaters (QRs) for ultrafast
quantum communication over transcontinental scales.

Lossy bosonic channel. The Kraus operator-sum rep-
resentation for the LBC is [1]

=Y EppE], (1)
k=0

where Ej, = ﬁvg(l — ~y)a'a/2gk is the Kraus operator

associated with losing k excitations, a (a') is the anni-
hilation (creation) operator, and -~ is the loss probabil-
ity of each excitation. Excitation loss in bosonic sys-
tems, such as localized cavity modes for quantum memo-
ries and propagating modes for quantum communication,
can be modeled as a LBC. For cavities, v = 1 — e™*¢,
where x is the cavity decay rate and t is the storage
time; for propagating modes with attenuation length
Lawt, v = 1 — n?e L/Lan where L is the propagation
distance and 7 is the coupling efficiency of the interface
between the optical channel and local processing devices.

Cat codes and properties. The basis states of cat
codes are defined as superpositions of 2d coherent states
lying equidistantly on a circle in the phase space of a
bosonic mode
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where w = €%a, |I)p is the Fock state with [ excitations
and n = 0,1,2,...,2d — 1 uniquely labels the 2d basis
states. The normalization factor reads [27, 28]
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Figure 1. (a) Wigner functions and excitation number distri-
butions of |C9) and |C5) with d = 3. (b) Average excitation
number (a'a), for cat states with d = 3. (c) Schematic of
alternating LBC (£) and QEC recovery (R). (d) Quantum
circuits of QEC recovery for cat codes, consisting of the dis-
persive coupling gate Upc followed by Z,; measurement of
excitation number, conditional rotation gate U, compensat-
ing the lost excitations, and finally amplitude restoration S.

Without losing generality, we assume « is real and pos-
itive. Since |CZ) is a superposition of n mod 2d Fock
states (|n)w, |n + 2d)r, |n + 4d)p, ...), cat states are
orthonormal, (C?|C") = §,,,. The average excitation
number (afa), = a?N?71 /N — o? for a — oo [29], as
shown in Fig. 1(b), while for finite « it deviates from a?
due to the oscillatory NZ2—1/NZ.

The 2d-dimensional cat Hilbert space can be divided
into d subspaces labeled by s = 0,1,---,d — 1. The
“s-subspace” has excitation number s mod d, spanned
by two logical states |07)% = |C2) and |1.)% = |Cs+d).
Fig. 1(a) shows the Wigner functions and excitation dis-
tributions of |C%) and |C+?) for d = 3, a = 3 and s = 0.
It becomes clear that d, «, and s are three degrees of
freedom that determine the performance of cat codes in
protecting quantum states against LBC.

After losing k excitations, the s-subspace is mapped
to the (s — k)-subspace: |C2) — |C57%) and |C3+d) —
|Cstd=Fk) | Hence, we can unambiguously distinguish
0 <k <d—1 losses without destroying the encoded log-
ical states by projectively measuring the excitation num-
ber mod d (called “Z; measurement”). In fact, since a cat
state maps back to itself after losing integer multiples of
2d excitations, we can restore the logical states correctly
with 2md < k < (2m + 1)d — 1 losses for integer m. If
there are (2m+1)d < k < 2(m+ 1)d — 1 losses, however,
we will misidentify the logical states. Since the symmet-
ric superposition |C2) + |C3+d) — |C37F) 4 |CsTI=F) s
preserved even if we misidentify the logical states, the
misidentification effectively induces an X rotation in the
logical basis — a logical bit-flip error.

In addition to the logical bit-flip error, the LBC can
induce another type of error via environment back-action
resulted from non-zero overlap between neighboring co-

herent components. For finite «, the logical states |C2)
and |C5*+4) generically differ in average excitation num-
ber, as shown in Fig. 1(b), as well as the m-th moments
{(ata)™)s # ((aTa)™) sy q for m € Z+. Hence, the excita-
tion loss to the environment leaks out information about
the encoded state, which is captured by Kraus operators
acting on logical states, Ey|Cl) o< (1 — 7)“Ta/2ak|C’;‘) =

e~ 2k \[NIF /Nn|ICPTRY with of = /T — ya and A =
~va?. The fact that Ng/_k /N is slightly different for
n = s and n = s + d results in a back-action associated
with losing k excitations [30]. Although, when we average
over all possible k, the back-action induced bias towards
|C3) or |C5F4) is mostly cancelled, the back-action does
reduce the coherence between |C$) and |C5+4) and effec-
tively induces a logical dephasing error.
QEC recovery for cat codes. Consider encoding with
a fixed s € {0,1,---,d — 1}. To protect the quantum
information from bosonic loss, we introduce a QEC re-
covery operation R (Fig. 1(d)), which consists of a Zg4
measurement, conditional loss compensation, and ampli-
tude restoration. First, we use the Z; measurement to
distinguish different loss events up to losing d — 1 exci-
tations. Similar to the qubit-assisted parity (Z2) mea-
surement [25], we consider a d-level ancilla (e.g., using
higher levels of a transmon [31]) that couples to a cavity
via a dispersive Hamiltonian Hpo = Z?;S Jxli){jlata,
where |j) are the basis states of the ancilla. Combined
with Fourier gates on the ancilla, Fy, we can implement
the unitary operation
Upc = Fle Xtre gy (4)
which maps the Z, information to the ancilla that is sub-
sequently measured in {|j)} basis. Then, conditioned on
the loss rate v and measured excitation loss number (mod
d), ke {0,1,---,d— 1}, we implement the following uni-
tary to restore the state back to the s-subspace

= (|C2) (CETF|+|CF N (CEFF |+ hee) +UR L (5)

where UJ is an arbitrary unitary on the complemen-
tary subspace of span {|C2,),|CSF),[C57%),|CFM) ),
so that Uy is a unitary on the entire Hilbert space. Fi-
nally, we restore the amplitude via the following unitary

= |CINCol +ICFCs ) + 5°, (6)
where S° is a complementary operation that makes S
a unitary on the entire Hilbert space. Using Eq. (2),
we can express Uy and S in the Fock basis and realize
them using SNAP gates [20] or GRAPE pulses [32] as
recently demonstrated in dispersively coupled supercon-
ducting transmon-cavity systems [21, 22]. For S, alterna-

tively, we may also use engineered dissipation to restore
the amplitude [17, 33]. Overall, the QEC recovery in



Fig. 1(d) implements

d—1
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which restores the original encoded subspace. Note that
the QEC recovery R with Kraus rank d can also be im-
plemented using a 2-level ancilla, with [log, d] steps of
measurement and feedforward control [34, 35].

Logical bit-flip and dephasing errors. In the regime
where (1) the probability of misidentifying logical states
due to excessive loss and (2) the overlap between neigh-
boring coherent states in the superpositions are small, we
can approximate £ = R o £ as a Pauli channel [29]:

Ep)=(1—€r—eq)p+e XpX +egZpZ (8)

where logical bit-flip error €7 and logical dephasing error
€4 are
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where 1 = 2A(2sin® 5 —sin® I), ¢ = A(2sin T —sin 2F),
0 = 2T — 202sin % — tan™* % To quantify the
residual decoherence after R, we consider the effective er-
ror rate I'(a, d, v, s) £ 3 ||€ — Z||,, where Z is the iden-
tity channel and £ |||, is the diamond distance [36, 37].
For small errors, I = €7 + ¢4 (see details in [29]).

For given v and d, we may select coherent amplitude
« and logical subspace s to minimize I". As illustrated
in Fig. 2, for each fixed s-subspace encoding, the I" oscil-
lates with o and there is a set of a where the dephas-
ing is suppressed to second-order reaching local minima
[29]. In fact, each dip corresponds to an « at which
(ata)s = (ata)s;q (associated with the crossing points in
Fig. 1(b)) and the residual back-action only comes from
the difference in higher moments of a'a.

To estimate the range of I'; we can analytically express
the approximate upper and lower bounds

Fi(O{, v, d) = €f + 6dlcos9::|21 . (11)

As illustrated in Fig. 2, to reach the minimum I'_ (lower
black curve), it is crucial to perform combined optimiza-
tion of v and s. In fact, if we are non-selective in the
logical subspace (i.e., averaging over all s) and only op-
timize the coherent amplitude «, the averaged error rate
[ = 3(Iy +T_) ~ iI'} (dashed purple curve) can be
orders of magnitude larger than I'_ for the parameter
region of interest. Moreover, the combined optimization
notably leads to a smaller optimized coherent amplitude.
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Figure 2. Effective error rate (numerical) for logical subspace
s =0,1,2,3 (blue, red, green and orange solid curves, respec-
tively) and analytical bounds '+ from Eq. (11) (black solid),
for d = 4 and v = 0.5%. The two types of errors in I'_, logi-

cal bit-flip error e; and dephasing error €4l ,_,, are shown.

The purple and black dashed line marks I" and the minimized
decoherence I'™™ | respectively. The inset shows the depen-
dence of I'™™ and o2 on 7. The approximate a2 from Eq. (12)
(solid line) agrees well with numerics.

We can estimate the optimal amplitude «, that min-
imizes I'_ by equating the two errors in Eq. (11). For
A < d, we have

o2 ~ EW(“/md 2 /&) (12)

for d > 2, where £ = Mﬁ and W is the Lambert

W function z = f~!(ze*) = W(ze*). The inset of Fig. 2
shows that Eq. (12) reasonably approximates the exact
«,. Based on the estimated «,, we can identify the best
combination of a* and s* near the vicinity of '™,

Application to repetitive correction. So far we have
considered the optimization of cat codes for one round of
LBC followed by QEC recovery, and identified the opti-
mal amplitude a and logical subspace s for given d and ~.
For practical applications, however, repetitive correction
can be needed. In the following, we consider one-way
QRs [14, 15, 38, 39] with cat codes over transcontinental
distances (> 103km) and optimize repeater spacing Lg
to best maintain the coherence.

Introducing the dimensionless repeater spacing Ly =
Lo/Last (Laty = 20km for optical fiber), we notice that
typically Ly < 1 for one-way QRs, so that the fiber in-
duced loss is correctable. The goal is to minimize the
error accumulation rate

7_(a, Lo, d) =T_(a, v, d)/ Ly . (13)

Fig. 3(a) shows the minimized 7_ as a function of d for
n = 99.5% with the associated arc length between neigh-
boring coherent states maopt/d. We observe that the min-
imized 7_ is anti-correlated with maop/d, as an increas-
ing arc length reduces the coherent component overlap
and consequently suppresses the dephasing. For small d,
the overall bit-flip error is better suppressed d increases,
thus favoring a larger arc length; for large d, however,
the typical number of losses roughly is A o vd?, leading
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Figure 3. Optimized performance of cat codes for QRs with
n = 99.5% and comparison with selected DV schemes. (a).
Minimum error accumulation rate 7— (red) and associated
optimum arc length maops/d (blue). (b). Optimized SKRPM
over long distances for one-way QRs with cat codes (red solid),
quantum polynomial codes [40] (brown dotted) and quantum
parity code [15, 41] (gray dashed). to is the gate operation
time taken as the same for three schemes.

to fast-growing uncorrectable loss errors. Hence, there is
an optimized choice of d that minimizes the overall error.
For one-way QRs with cat codes, the quantum oper-
ation of the chain (Fig. 1(c)) can be modeled by £V =
(Ro L)N, with N = Lmt/ﬂgptLaﬁ stations, and we con-
sider quantum key distribution to evaluate the perfor-
mance [29]. Using the optimized secure key rate per mode
(SKRPM) as a metric, in Fig. 3(b), we compare the per-
formance of one-way QRs [42] with cat codes, quantum
parity code (QPC) [15, 41] and quantum polynomial code
(QPyC) [40] for n = 99.5%. We see that, with high cou-
pling efficiency, cat codes make better use of the mode-
resource and can achieve much higher SKRPM over thou-
sands of kilometers compared with DV quantum codes.
Discussion on imperfections. So far, we have only
considered suppressing decoherence induced by photon
loss. Nonetheless, QEC recovery (Fig. 1(d)) in prac-
tice can be faulty. To achieve a comparable performance
enhancement (from T to I'_) as the ideal case, the er-
ror introduced by recovery should be sufficiently small
€rec S T'—. As detailed in the supplementary [29], various
imperfections can be efficiently suppressed. The dom-
inant imperfection is the T1 decay of the ancilla dur-
ing dispersive coupling, which may lead to unreliably Z,4
measurement and imperfect Uy, gate. Besides experimen-
tally improving the T1 time of the ancilla [43-45], there
are various approaches to suppress the errors induced by
the ancilla decay. For example, we may use resonant cou-
pling between the ancilla and the cavity for faster quan-
tum gates, with gate time (~ 10ns [46, 47]) much shorter
than that for dispersive coupling (~ 1us [22]) and conse-
quently suppress the error from the ancilla decay.
Alternatively, we may implement an equivalent recov-
ery circuit without suffering from ancilla decay. It con-
tains three modifications: (1) use majority voting based
on repeated parity measurement and dispersion engineer-
ing to suppress the measurement error due to ancilla de-
cay to higher order, (2) switch the logical subspace to the
(s — k)-subspace to avoid the Uy gate, (3) for amplitude

restoration S, restore o to the value that is close to the
optimal amplitude o, and minimizes I'(«a, d, v, s—k). As
the variation in T'_ is small near «y,, switching to (s — k)-
subspace can still achieve a small effective error rate. We
note S can be achieved via multi-photon pumping [17]
insensitive to ancilla decay as it only virtually excites
the ancilla. Therefore, the modified circuit can be robust
against ancilla decay and other imperfections [29].

Conclusion and outlook. We have investigated cat
codes for protecting quantum states against bosonic ex-
citation loss. At the encoded level, there are two major
types of uncorrectable errors, logical bit-flip error due
to excessive excitation loss, and logical dephasing error
induced by back-action. We have demonstrated that
non-trivial combination of coherent amplitude and log-
ical subspace can efficiently suppress logical dephasing
error, and lead to greatly improved quantum error cor-
rection performance. We expect to observe suppressed
back-action in other approximate continuous variable
quantum codes as (0r|afa|0r) = (1z]a’allL) is satis-
fied and the balance between the back-action and exces-
sive excitation loss is critical for optimizing their perfor-
mances. Comparison between cat codes and other single-
mode schemes, such as GKP codes [18, 48, 49] and bino-
mial codes [19], over a lossy bosonic channel could shed
light on the optimal construction of single-mode quantum
code. We notice that cat codes become less favorable
than conventional multi-mode schemes in case of long
communication distance (Fig. 3(b)) and/or high coupling
loss [29], as a result of high occupation of a single mode.
This will motivate us to explore unconventional multi-
mode continuous variable encodings with multiple exci-
tations per mode [50] that may asymptotically achieve
the channel capacity of lossy bosonic channel.

As an application, we have explored one-way quan-
tum communication over long distances with cat codes
and found that, given high-fidelity coupling into and out
of the repeaters, this single-mode scheme can outper-
form conventional ones with single excitation occupying
multiple modes, in terms of secure key rate per mode.
Such cat encoding of flying qubit can also be used for re-
mote entanglement generation with error correction [51]
and quantum state transfer via noisy photonic/phononic
waveguides [52, 53]. With recent progress on efficient
coupling between fiber and optical waveguide [54], and
high-fidelity frequency conversion between optical and
microwave modes [55-57|, we may even envision realis-
tic quantum repeaters consisting of superconducting cir-
cuits for error correction and optical-microwave quantum
transducers for protecting transmitted quantum informa-
tion against photon loss in optical channels.
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Note: During the manuscript preparation, the authors
became aware of a related work on cat codes [58]. Dif-
ferent from that work, here we propose a deterministic
amplitude restoration for recovery and consider combined
optimization of amplitude and logical subspace.
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