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We present an algorithm for error correction in topological codes that exploits modern machine
learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann
machine, of the type extensively used in deep learning. We provide a general prescription for the
training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes
with very little specialization. We demonstrate the neural decoder numerically on the well-known

two dimensional toric code with phase-flip errors.

Introduction: Much of the success of modern machine
learning stems from the flexibility of a given neural net-
work architecture to be employed for a multitude of dif-
ferent tasks. This generalizability means that neural net-
works can have the ability to infer structure from vastly
different data sets with only a change in optimal hyper-
parameters. For this purpose, the machine learning com-
munity has developed a set of standard tools, such as
fully-connected feed forward networks [1] and Boltzmann
machines [2]. Specializations of these underlie many of
the more advanced algorithms, including convolutional
networks [3] and deep learning [4, 5], encountered in
real-world applications such as image or speech recog-
nition [6].

These machine learning techniques may be harnessed
for a multitude of complex tasks in science and engineer-
ing [7-17]. An important application lies in quantum
computing. For a quantum logic operation to succeed,
noise sources which lead to decoherence in a qubit must
be mitigated. This can be done through some type of
quantum error correction — a process where the logical
state of a qubit is encoded redundantly so that errors
can be corrected before they corrupt it [18]. A leading
candidate for this is the implementation of fault-tolerant
hardware through surface codes, where a logical qubit
is stored as a topological state of an array of physical
qubits [19]. Random errors in the states of the physi-
cal qubits can be corrected before they proliferate and
destroy the logical state. The quantum error correc-
tion protocols that perform this correction are termed
“decoders”, and must be implemented by classical algo-
rithms running on conventional computers [20, 21].

In this paper we demonstrate how one of the simplest
stochastic neural networks for unsupervised learning, the
restricted Boltzmann machine [22], can be used to con-
struct a general error-correction protocol for stabilizer
codes. Give a syndrome, defined by a measurement of
the end points of an (unknown) chain of physical qubit
errors, we use our Boltzmann machine to devise a proto-
col with the goal of correcting errors without corrupting
the logical bit. Our decoder works for generic degen-
erate stabilizers codes that have a probabilistic relation
between syndrome and errors, which does not have to be
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FIG. 1. Several operations on a 2D toric code. Logical oper-
ators ZAS) and Z(Ll) (orange) are non-trivial cycles on the real
lattice. A physical error chain e (purple) and its syndrome
S(e) (black squares). A recovery chain ' (green), with the
combined operator on the cycle e @ ' being a product of
stabilizers ZQZLaZy (recovery success). A recovery chain r”
(red) whose cycle has non-trivial homology and acts on the

code state as Zg) (logical failure).

a priori known. Importantly, it is very simple to imple-
ment, requiring no specialization regarding code locality,
dimension, or structure. We test our decoder numerically
on a simple two-dimensional surface code with phase-flip
errors.

The 2D Toric Code. Most topological codes can be
described in terms of the stabilizer formalism [23]. A sta-
bilizer code is a particular class of error-correcting code
characterized by a protected subspace C defined by a sta-
bilizer group S§. The simplest example is the 2D toric
code, first introduced by Kitaev [24]. Here, the quan-
tum information is encoded into the homological degrees
of freedom, with topological invariance given by the first
homology group [25]. The code features N qubits placed
on the links of a L x L square lattice embedded on a
torus. The stabilizers group is & = {ZAp,)A(y}, where the
plaquette and vertex stabilizers are defined respectively
as Zp = Qye, 07 and X, = Q¢ 67, with 67 and &7
acting respectively on the links contained in the plaque-



tte p and the links connected to the vertex v. There are
two encoded logical qubits, manipulated by logical oper-
ators ZAE’Q) as 6% acting on the non-contractible loops on
the real lattice and logical Xélﬂ) as the non-contractible
loops on the dual lattice (Fig 1).

Given a reference state [1)p) € C, let us consider the
simple phase-flip channel described by a Pauli operator
where 67 is applied to each qubit with probability pe...
This operator can be efficiently described by a mapping
between the links and Zs, called an error chain e, whose
boundary is called a syndrome S(e). In a experimen-
tal implementation, only the syndrome (and not the er-
ror chain) can be measured. Error correction (decoding)
consists of applying a recovery operator whose chain r
generates the same syndrome, S(e) = S(r). The recov-
ery succeeds only if the combined operation is described
by a cycle (i.e. a chain with no boundaries) e @ r that
belongs to the trivial homology class hg, describing con-
tractible loops on the torus. On the other hand, if the
cycle belongs to a non-trivial homology class (being non-
contractible on the torus), the recovery operation directly
manipulates the encoded logical information, leading to
a logical failure (Fig 1).

Several decoders have been proposed for the 2D toric
code, based on different strategies [26-30]. Maximum
likelihood decoding consists of finding a recovery chain
r with the most likely homology class [31, 32]. A differ-
ent recovery strategy, designed to reduce computational
complexity, consists of generating the recovery chain r
compatible with the syndrome simply by using the min-
imum number of errors. Such a procedure, called Min-
imum Weight Perfect Matching [33] (MWPM), has the
advantage that can be performed without the knowledge
of the error probability pe,.. This algorithm is however
sub-optimal (with lower threshold probability [25]) since
it does not take into account the high degeneracy of the
error chains given a syndrome.

The Neural Decoder. Neural networks are commonly
used to extract features from raw data in terms of prob-
ability distributions. In order to exploit this for error
correction, we first build a dataset made of error chains
and their syndromes D = {e, S}, and train a neural net-
work to model the underlying probability distribution
Pdata(€,S). Our goal is to then generate error chains
to use for the recovery. We use a generative model called
a Boltzmann machine, a powerful stochastic neural net-
work widely used in the pre-training of the layers of deep
neural networks [34, 35]. The network architecture fea-
tures three layers of stochastic binary neurons, the syn-
drome layer S € {0,1}/2 the error layer e € {0,1}%,
and one hidden layer h € {0,1}"* (Fig. 2). Symmet-
ric edges connect both the syndrome and the error layer
with the hidden layer. We point out the this network is
equivalent to a traditional bilayer restricted Boltzmann
machine, where we have here divided the visible layer into

FIG. 2. The neural decoder architecture. The hidden layer h
is fully-connected to the syndrome and error layers S and e
with weights U and W respectively.

two separate layers for clarity. The weights on the edges
connecting the network layers are given by the matrices
U and W. Moreover, we also add external fields b, ¢ and
d coupled to the every neuron in each layer. The proba-
bility distribution that the probabilistic model associates
to this graph structure is the Boltzmann distribution [36]

1
pa(e, S, h) = e~ Ex(e,S:h) (1)
Zx
where Zx = Tr(p s.¢) e Ea(eS:h) g the partition func-
tion, A = {U, Wb, c,d} is the set of parameters of the

model, and the energy is

E)\(e, S, h) = — Z U,h; Sy, — Z Wijhiej-i-
ik ij

— Z bjej - chhl - deSk.
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The joint probability distribution over (e, S) is obtained
after integrating out the hidden variables from the full
distribution

1
pa(e,S) =D pa(e.8.h) = e e 3)
h

(2)

where the effective energy Ex(e,S) can be computed
exactly. Moreover, given the structure of the net-
work, the conditional probabilities px(e|h), pa(S|h)
and px(h|e,S) are also known exactly. The training
of the machine consists of tuning the parameters A un-
til the model probability px(e, S) becomes close to the
target distribution pgqtq (e, S) of the dataset. This trans-
lates into solving an optimization problem over the pa-
rameters A by minimizing the distance between the two
distribution, defined as the Kullbach-Leibler (KL) diver-
gence, KL oc =3~ g)cp logpa(e, S). Details about the
Boltzmann machine and its training algorithm are re-
ported in the Supplementary Materials.

We now discuss the decoding algorithm, which pro-
ceeds assuming that we successfully learned the distribu-
tion px(e,S). Given an error chain ey with syndrome



Sy we wish to use the Boltzmann machine to generate
an error chain compatible with Sy to use for the recov-
ery. To achieve this goal we separately train networks on
different datasets obtained from different error regimes
Perr.  Assuming we know the error regimes that gen-
erated e, the recovery procedure consists of sampling
a recovery chain from the distribution px(e|Sp) given
by the network trained at the same probability pe,, of
eo. Although the Boltzmann machine does not learn
this distribution directly, by sampling the error and hid-
den layers while keeping the syndrome layer fixed to Sy,
since pa(e, So) = pa(e|So)p(So), we are enforcing sam-
pling from the desired conditional distribution. An ad-
vantage of this procedure over decoders that employ con-
ventional Monte Carlo [28, 29] on specific stabilizer codes
is that specialized sampling algorithms tied to the stabi-
lizer structure, or multi-canonical methods such as par-
allel tempering, are not required. Finally, note that the
assumption of perfect learning is not critical, since the
above sampling routine can be modified with an extra
rejection step as discussed in Ref. [14] to ensure sampling
occurs from the proper physical distribution.

An error correction procedure can be defined as fol-
lows (Alg. 1): we first initialize the machine into a ran-
dom state of the error and hidden layers (see Fig. 2)
and to Sy for the syndrome layer. We then let the ma-
chine equilibrate by repeatedly performing block Gibbs
sampling. After some amount of equilibration steps, we
begin checking the syndrome of the error state e in the
machine and, as soon as S(e) = Sy we select it for the
recovery operation. If such a condition is not met before
a fixed amount of sampling steps, the recovery attempt
is stopped and considered failed. This condition makes
the precise computational requirements of the algorithm
ill-defined, since the cut-off time can always be increased
resulting in better performance for a higher computa-
tional cost.

Algorithm 1 Neural Decoding Strategy

1: ep: physical error chain

2: So = S(eo) > Syndrome Extraction

3: RBM = {e, S = So, h} > Network Initialization

4: while S(e) # So do > Sampling

5: Sample h ~ p(h | e, So)

6: Sample e ~ p(e | h)

7: end while

8 r=e > Decoding
Results. We train neural networks in different error

regimes by building several datasets D, = {ey, Sk},
at elementary error probabilities p = {0.5,0.6,...,0.15}
of the phase-flip channel. For a given error probability,
the network hyper-parameters are individually optimized
via a grid search (for details see the Supplementary Ma-
terial). Once training is complete, we perform decoding
following the procedure laid out in Alg. 1. We generate a
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FIG. 3. Logical failure probability as a function of elementary
error probability for MWPM (lines) and the neural decoder
(markers) of size L =4 (red) and L = 6 (green).

test set 7, = {ex }2L, and for each error chain e, € 7,,, af-
ter a sultable equilibration time (usually N, oc 10? sam-
pling steps), we collect the first error chain e compatible
with the original syndrome, S(e) = S(ex). We use this
error chain for the recovery, 7(*) = e. Importantly, error
recovery with 7(*) chosen from the first compatible chain
means that the cycle e, + 7*) is sampled from a distri-
bution that includes all homology classes. By computing
the Wilson loops on the cycles we can measure their ho-
mology class. This allows us to gauge the accuracy of the
decoder in term of the logical failure probability, defined
as Pfqil = f“” where nyq; is the number of cycles with
non-trivial homology Because of the fully-connected ar-
chitecture of the network, and the large complexity of
the probability distribution arising from the high degen-
eracy of error chains given a syndrome, we found that
the dataset size required to accurately capture the un-
derlying statistics must be relatively large (|D,| o< 10°).
In Fig. 3 we plot the logical failure probability Pjq as a
function of the elementary error probability for the neural
decoding scheme. We note that at low pe,., our logical
failure probabilities follow the expected [37] scaling form

pels (not plotted).

To compare our numerical results we also perform
error correction using the recovery scheme given by
MWPM ([38]. This algorithm creates a graph whose ver-
tices corresponds to the syndrome and the edges connect
each vertex with a weight equal to the Manhattan dis-
tance (the number of links connecting the vertices in the
original square lattice). MWPM then finds an optimal
matching of all the vertices pairwise using the minimum
weight, which corresponds to the minimum number of
edges in the lattice [39]. Fig. 3 displays the compar-
ison between a MWPM decoder (line) and our neural
decoder (markers). As is evident, the neural decoder has
an almost identical logical failure rate for error proba-



bilities below the threshold (per- & 10.9 [25]), yet a sig-
nificant higher probability above. Note that by training
the Boltzmann machine on different datasets we have en-
forced in the neural decoder a dependence on the error
probability. This is in contrast to MWPM which is per-
formed without such knowledge. Another key difference
is that the distributions learned by the Boltzmann ma-
chine contain the entropic contribution from the high de-
generacy of error chains, which is directly encoded into
the datasets. It will be instructive to explore this fur-
ther, to determine whether the differences in Fig. 3 come
from inefficiencies in the training, the different decoding
model of the neural network, or both. Finite-size scaling
on larger L will allow calculation of the threshold defined
by the neural decoder.

In the above algorithm, which amounts to a simple
and practical implementation of the neural decoder, our
choice to use the first compatible chain for error correc-
tion means that the resulting logical operation is sampled
from a distribution that includes all homology classes.
This is illustrated in Fig. 4, where we plot the histogram
of the homology classes for several different elementary
error probabilities. Accordingly, our neural decoder can
easily be modified to perform Maximum Likelihood (ML)
optimal decoding. For a given syndrome, instead of ob-
taining only one error chain to use in decoding, one could
sample many error chains and build up the histogram
of homology classes with respect to any reference er-
ror state. Then, choosing the recovery chain from the
largest histogram bin will implement, by definition, ML
decoding. Although the computational cost of this pro-
cedure will clearly be expensive using the current fully-
connected restricted Boltzmann machine, it would be in-
teresting to explore specializations of the neural network
architecture in the future to see how its performance may
compare to other ML decoding algorithms [31]

Conclusions. We have presented a decoder for topolog-
ical codes using a simple algorithm implemented with a
restricted Boltzmann machine, a common neural network
used in many machine learning applications. Our neural
decoder is easy to program using standard machine learn-
ing software libraries and training techniques, and relies
on the efficient sampling of error chains distributed over
all homology classes. Numerical results show that our
decoder has a logical failure probability that is close to
MWPM, but not identical, a consequence of our neural
network being trained separately at different elementary
error probabilities. This leads to the natural question of
the relationship between the neural decoder and optimal
decoding, which could be explored further by a variation
of our algorithm that implements maximum likelihood
decoding.

In its current implementation, the Boltzmann machine
is restricted within a given layer of neurons, but fully-
connected between layers. This means that our decoder
does not depend on the specific geometry used to im-
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FIG. 4. Histogram of the homology classes returned by our
neural decoder for various elementary error probabilities perr.
The green bars represent the trivial homology class ho corre-
sponding to contractible loops on the torus. The other three

classes correspond respectively to the logical operations ZS),
72 and 2072,

plement the code, nor on the structure of the stabilizer
group; it is trained simply using a raw data input vec-
tor, with no information on locality or dimension. Such
a high degree of generalizability, which is one of the core
advantages of this decoder, also represents a challenge for
investigating bigger systems. For example, a bottleneck
in our scheme to decode larger sizes is finding an error
chain compatible with the syndrome within a reasonable
cut-off time.

In order to scale up our system sizes on the 2D toric
code (as required e.g. to calculate the threshold), one
could relax some of the general fully-connected struc-
ture of the network, and specialize it to accommodate
the specific details of the code. Geometric specialization
such as this has been explicitly demonstrated to improve
the representational efficiency of neural networks in the
case of the toric code [8, 13]. This specialization should
be explored in detail, before comparisons of computa-
tional efficiency can be made between our neural decoder,
MWPM, and other decoding schemes. Note that, even
with moderate specialization, the neural decoder as we
have presented above can immediately be extended to
other choices of error models [40], such as the more re-
alistic case of imperfect syndrome measurement [41], or
transferred to other topological stabilizer codes, such as
color codes [42, 43]. We also point out that the train-
ing of the networks are performed off-line and have to be
carried out only once. As such, the high computational
cost of the training need not be considered when evaluat-
ing the decoder computational efficiency for any of these
examples.

Finally, it would be interesting to explore the improve-
ments in performance obtained by implementing stan-
dard tricks in machine learning, such as convolutions,



adaptive optimization algorithms, or the stacking of mul-
tiple Boltzmann machines into a network with deep struc-
ture. Given the rapid advancement of machine learning
technology within the world’s information industry, we
expect that such tools will be the obvious choice for the
real-world implementation of decoding schemes on future
topologically fault-tolerant qubit hardware.
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