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Abstract

Boolean network models describe genetic, neural, and social dynamics in complex networks,

where the dynamics depend generally on network topology. Fixed points in a genetic regulatory

network are typically considered to correspond to cell types in an organism. We prove that the

expected number of fixed points in a Boolean network, with Boolean functions drawn from prob-

ability distributions that are not required to be uniform or identical, is one, and is independent

of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also

demonstrate that the expected number is increased by the predominance of positive feedback in a

cycle.
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Optimizing network topology is a feasible strategy to improve the functional character-

istics of network systems [1–4]. Therefore, the relationships between topological properties

and the dynamical characteristics of these systems have attracted a considerable amount

of research interest, and challenges to obtaining their analytical descriptions have been ad-

dressed. Boolean networks (BNs) [5–8], which serve as models for complex networks in

biological [9–11], technological [12, 13], and sociological systems [14, 15], even today still

have the potential to provide novel analytical methods to connect dynamics with static

network structures due to their simplicity. While chaos-order transitions have been investi-

gated in randomly constructed BNs (RBNs) [16–19], recent studies have revealed the effects

of network topologies on the stability of their dynamics [20, 21]. Once it was proved that

the average number of attractors in an RBN grows faster than any power law with network

size [22], the scaling behaviors of the number and size of attractors for BNs with different

topologies and distributions of Boolean functions were determined [23–26]. In this manner,

interest in BNs with special topologies, including small-world [27] and scale-free [28–30]

networks, has increased.

A fundamental characteristic of a BN is the number of fixed points (FPs). A plurality

of FPs is required for cell diversity because an FP can be assumed to represent a gene

expression pattern that determines cell identity in cell differentiation [31–34]. It has been

pointed out that the average number of FPs in an RBN is only one and, thus, real gene

regulatory systems should have special structures [35]. These may be non-random network

topologies or non-random regulatory functions, and can generate a sufficient number of FPs.

A case-by-case analysis is indispensable to approaching this issue because Boolean dy-

namics depend on both network topology and the assignment of Boolean functions. As an

extreme case, the upper bound of the number of FPs in a BN under the restriction of a

(signed) network topology has been described in terms of the minimum (positive) feedback

vertex set [36, 37]. This directly provides the necessary condition for a plurality of FPs in

(positive) cycle structures [38, 39].

However, the upper bound does not tell us a typical number of FPs. The expected number

of FPs under the topological restriction should be obtained, because in many real cases, it is

difficult to determine regulation functions whereas network topology can be observed. Once

the expected number is formulated in terms of network topologies, it is clarified whether an

increase in the number of cycles in a BN is relevant to increasing the expected number of
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FPs along with the upper bound. Moreover, it is determined whether positive cycles in a

signed BN [37] effectively contribute to increasing the expected number.

As well as network topology, the presence of biases in Boolean functions will be important

for the expected number. Although the expected number under no bias has been easily

calculated and it is independent of network topology [40], biases should not be neglected

because they have been observed in real systems [41]. It is known that biases in favor of

either high or low frequency in on-state outputs (called p-bias) [16, 17] and high frequency

of canalizing inputs [18, 41–43] cause chaos-order transitions in an RBN. Therefore, their

influence on the expected number should also be clarified.

We consider a BN described as

xi(t + 1) = fi[{xj(t); j ∈ Ji}], (1)

where xi and fi are a Boolean variable and a Boolean function of the vertex i, respectively.

All subscripts in this Letter are indices of vertices i = 1, · · · , N , where N denotes the total

number of vertices. The variable xi, which takes xi = 0 for the off state and xi = 1 for the on

state at every discrete time instant, is updated by fi. In a BN with the synchronous update

scheme, all variables are updated at the same time. To simulate more realistic situations,

the asynchronous update scheme is also often employed [44, 45]. Since FPs do not depend

on the choice of update scheme, we can employ either scheme. A set of input vertices to

vertex i is denoted as Ji. Thus, fi is a function of {xj ; j ∈ Ji}.

A link from vertex j to i represents one of the following three conditions: (i) fi takes the

input variable xj . (ii) In addition to Condition (i), fi is dependent on xj, i.e.,

fi(xj = 0, {xk; k ∈ Ji − j}) 6= fi(xj = 1, {xk; k ∈ Ji − j}) (2)

holds for at least one state of {xk; k ∈ Ji − j}. (iii) In addition to Conditions (i) and (ii), fi

is monotonically dependent on xj , i.e., only either

fi(xj = 0, {xk; k ∈ Ji − j}) ≤ fi(xj = 1, {xk; k ∈ Ji − j}) (3)

or

fi(xj = 0, {xk; k ∈ Ji − j}) ≥ fi(xj = 1, {xk; k ∈ Ji − j}) (4)

holds for any state of {xk; k ∈ Ji−j}. Equation (3) (Eq. (4)) corresponds to a monotonically

increasing (decreasing) function of xj . Simultaneously, link j → i represents activation
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(inhibition) interaction, and can be called a positive (negative) link [37]. Any link condition

can be employed for our theory.

We assume that while network topology (directed links and vertices) is fixed, fi is drawn

from a probability distribution of Boolean functions denoted by Pi(fi) (Fig. 1). The links

defined by any one of Conditions (i), (ii), and (iii) restrict possible functions, i.e., Pi(fi) = 0 if

fi contradicts the link condition. The normalization condition is described as
∑

fi
Pi(fi) = 1,

where the summation is over all possible functions of fi. We see an example shown in Fig. 2

(a) and (b): vertex i has three input vertices. If link condition (iii) is employed, since each

of functions I and J is a non-monotonic function of x1 and x2, Pi(fi = I, J) = 0 is assumed.

Since network topology designates only Pi(fi) = 0, further arrangements, such as Pi(fi = A)

and Pi(fi = B), are needed.

Let us present some typical distributions of Pi(fi). In the case of p-bias [16, 17], fi is

randomly generated and the on state is allocated as its output value for a certain input state

with probability p. When either link condition (ii) or (iii) is employed, the contradictory

functions are discarded. Thus, the p-biased Boolean functions tend to output on-state when

p > 0.5. To explain the canalizing bias [18, 41–43], we revisit the example in Fig. 2. Function

A is called a canalizing function of x1 because if the input variable x1 is fixed to either 0

or 1 (x1 = 1 in this case), its output state is uniquely determined independently of x2 and

x3. Hence, x1 is called a canalizing input of Function A. In this manner, a K-variable

Boolean function takes 0 to K canalizing inputs. Under the canalizing bias, percentages of

canalizing inputs are controlled, where some additional rules are required to set up Pi(fi).

The canalizing bias has been observed in real transcriptional systems [41]. More general

distributions can also be considered in our theory.

At an FP, state xi(t) prior to update and its output state xi(t + 1) are equal for any i.

Thus, when both a directed network and a set of Boolean functions {fi; i = 1, · · · , N} are

given, the number of FPs is uniquely determined as

n({fi}) =
∑

x1=0,1

· · ·
∑

xN=0,1

N
∏

i=1

δ[xi, fi({xj; j ∈ Ji})], (5)

where δ[a, b] is the Kronecker delta: δ[a, b] = 1 for a = b and δ[a, b] = 0 for a 6= b. Note that

a and b can depend on variables {xi} throughout our analysis.

When Boolean functions are randomly assigned to every vertex under the restriction of
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FIG. 1. An example set of a Boolean network and probability distributions of Boolean functions.

Boolean function fi, assigned to vertex i, is drawn from its probability distribution Pi(fi). Under

link condition (i), a graph of Pi(fi) can have 22
Ki (the total number of Boolean functions) bars at

most, where Ki is the number of input links to vertex i. Under link condition (ii) or (iii), a graph

has less than 22
Ki bars. In this example, uniform, biased, and more complicated distributions are

illustrated for P1(f1), P2(f2), and P3(f3).
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FIG. 2. (a) Schematic of a set of input vertices to vertex i, denoted by Ji = {1, 2, 3}. Subset

Ti = {1, 2} is employed to classify Boolean functions fi. (b) Truth table of three-variable Boolean

functions. Based on the definition of an N-equivalent class with respect to Ti = {1, 2}, functions

A-D, E-H, and I-J are organized into classes labeled as mi(Ti) = 1, 2, and 3. The number of

functions in the mi(Ti)-th class, Qi[mi(Ti)], depends on mi(Ti).

a network topology, the expected number of FPs is defined by

〈n〉 =
∑

f1

· · ·
∑

fN

n({fi})
N
∏

i=1

Pi(fi). (6)

The expected number will depend on both network topology and the probability distribu-

tions of the Boolean functions in general.
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By way of preparation for the analysis, we introduce a classification method of Boolean

functions called the negation(N)-equivalent class [12, 46]. We denote the negation of x by

x̄, and consider function f({xj; j ∈ J}). If another function g is given by g({xj; j ∈ J}) ≡

f({x̄j; j ∈ U}, {xj′; j
′ ∈ J − U}), where U is an arbitrary subset of J , f and g are N-

equivalent. An N-equivalent class is defined as a set of all functions that are N-equivalent to

one another. We tighten the definition, and further divide the class as follows (Fig. 2): T is a

given subset of J . If g is given by g({xj; j ∈ J}) ≡ f({x̄j; j ∈ U}, {xj′; j
′ ∈ T −U}, {xk; k ∈

J − T }), where U is an arbitrary subset of T , f and g are N-equivalent with respect to

T . An N-equivalent class with respect to T is defined as a set of all functions that are

N-equivalent to one another with respect to T . The integer index m(T ) is employed to

represent the m(T )-th N-equivalent class with respect to T . We denote the set and the

number of functions in the m(T )-th N-equivalent class by F [m(T )] and

Q[m(T )] ≡
∑

f∈F [m(T )]

1, (7)

respectively. When the N-equivalent class for fi is discussed, we use the notations Ji, Ti,

mi(Ti), Fi[mi(Ti)], and Qi[mi(Ti)]. All fi ∈ Fi[mi(Ti)] satisfy the same link conditions.

An example of this classification is shown in Fig. 2. Function A has only activation links

while functions B,C, and D have one or two inhibition links. Thus, in N-equivalent functions

with respect to Ti, only the roles of the links j(∈ Ti) → i are different.

We define the concept of stochastic neutrality to characterize a directed link as follows:

link j → i is stochastically neutral if Pi(fi) = Pi(gi) holds for any pair of fi(xj , {xk; k ∈

Ji − j}) and gi(xj , {xk; k ∈ Ji − j}) ≡ fi(x̄j , {xk; k ∈ Ji − j}). Remember that gi is the

N-equivalent function of fi with respect to j. Thus, when Ti is a given subset of Ji and all

links from vertices j ∈ Ti to vertex i are stochastically neutral, Pi(fi) can be written as

Pi [fi ∈ Fi[mi(Ti)]] = P̃i[mi(Ti)], (8)

where P̃i[mi(Ti)] is a function that only depends on mi(Ti) instead of fi. This distribution

must satisfy the normalization condition described as

∑

mi(Ti)=1,2,···

∑

fi∈Fi[mi(Ti)]

Pi(fi) =
∑

mi(Ti)=1,2,···

P̃i[mi(Ti)]Qi[mi(Ti)] = 1. (9)

When link j → i is stochastically neutral, the probability that the link is activation in-

teraction is equal to the probability that it is inhibition interaction; the probabilities that

non-monotonic functions are assigned can be nonzero under link condition (i) or (ii).
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We emphasize that all links are stochastically neutral when the Boolean functions are

randomly generated under the p-bias or the canalizing bias because all fi in Fi[mi(Ji)]

have the same number of on-state outputs and the same canalizing inputs; consequently,

Pi[fi ∈ Fi[mi(Ji)]] = P̃i[mi(Ji)]. In this sense, stochastic neutrality is commonly realized.
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FIG. 3. Definition of feedback arc set (FAS). The bold arrows and circles in the original network

correspond to links forming the FAS and vertices taking these links, respectively. Numbers 1 − 5

in the acyclic network represent an acyclic ordering. Therefore, j < i holds for any link j → i.

Our theorem below is described in terms of the feedback arc set (FAS) [47]. An FAS is

defined as a subset of links containing at least one link of every cycle in a directed network.

Therefore, the removal of the FAS renders the network acyclic (Fig. 3). In general, FAS is

not unique, nor is it required to have a minimum size. For a given network, the following

theorem holds:

Theorem.— If a set of stochastically neutral links is an FAS, 〈n〉 = 1.

Proof.— We sort all vertices in the network as follows: the removal of the stochastically

neutral links from the original network yields an acyclic network. We can apply an acyclic

ordering to the acyclic network because every acyclic network has such an ordering of its

vertices [47]. An acyclic ordering assigns integer numbers i (1 ≤ i ≤ N) to every vertex,

where j < i holds for every link j → i. We assign the same set {i} to the original network.

Now, j < i holds for every link j → i except for the stochastically neutral links in the

original network.

We denote the set of vertices that are end points of the stochastically neutral links by

Z. For i ∈ Z, Ti ⊆ Ji is assumed such that links j ∈ Ti → i are stochastically neutral and

j ∈ Ji − Ti → i are not. For i ∈ Z, using Ti, the summation can be expressed as

∑

fi∈Fi[mi(Ti)]

δ[xi, fi({xj ; j ∈ Ji})] = Ri[mi(Ti), xi, {xj ; j ∈ Ji − Ti}]Qi[mi(Ti)], (10)

where
∑

xi
Ri[mi(Ti), xi, {xj ; j ∈ Ji − Ti}] = 1 holds (see the Supplemental Material [48]).
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Substituting Eq. (5) into Eq. (6) and using Eqs. (8) and (10),

〈n〉 =







∏

i∈Z

∑

mi(Ti)=1,2,···







{

∏

i/∈Z

∑

fi

}{

∏

i∈Z

P̃i[mi(Ti)]Qi[mi(Ti)]

}{

∏

i/∈Z

Pi(fi)

}

∑

x1=0,1

· · ·
∑

xN=0,1

{

∏

i∈Z

Ri[mi(Ti), xi, {xj ; j ∈ Ji − Ti}]

}{

∏

i/∈Z

δ[xi, fi({xj; j ∈ Ji})]

}

= 1, (11)

where the summations
∑

x1
· · ·

∑

xN
can be carried out in the inverse acyclic order. ✷

Equation (11) indicates that a probability for n ≥ n′ is at most 1/n′, and will be smaller

in general (see also Fig. 4). In other words, a BN does not produce a large plurality of FPs

in most cases. The noteworthy finding is that both network topology and biases in favor

of the on-state outputs and the canalizing inputs are irrelevant to the plurality of the FPs,

though critical for chaos-order transition. The theorem further indicates that the necessary

condition for changing 〈n〉 is violating stochastic neutrality on all links in at least one cycle.

We now consider a network containing ν vertex-disjoint cycles, and introduce the sym-

metric violation of stochastic neutrality for all links on ν cycles. We assume that links

directly connecting any pair of vertices at the η-th cycle do not exist, except for the links of

the η-th cycle. When link j → i is on one of the ν cycles, vertex i has






Pi

[

fi ∈ F
j+
i [mi(Ji)]

]

= P̃i[mi(Ji)] + ψi[mi(Ji)],

Pi

[

fi ∈ F
j−

i [mi(Ji)]
]

= P̃i[mi(Ji)] − ψi[mi(Ji)],
(12)

where F
j+(−)
i [mi(Ji)] ⊂ Fi[mi(Ji)] is the set of monotonically increasing (decreasing) func-

tions of xj . If fi is a non-monotonic function of xj , Pi[fi] = 0. The weight parameter

ψi[mi(Ji)] can be tuned in the range −P̃i[mi(Ji)] ≤ ψi[mi(Ji)] ≤ +P̃i[mi(Ji)]. When

ψi[mi(Ji)] = +(−)P̃i[mi(Ji)] for any mi(Ji), link j → i is always positive (negative). The

other vertices, not on the ν cycles, have Pi [fi ∈ Fi[mi(Ji)]] = P̃i[mi(Ji)].

Under the above assumptions, we obtain the expected number of FPs when the symmetric

violation of stochastic neutrality is introduced for all ν cycles:

〈n〉 =
ν
∏

η=1



1 +

C(l(η),η)
∏

i=C(1,η)

∑

mi(Ji)

si[mi(Ji)]ψi[mi(Ji)]Qi[mi(Ji)]



 , (13)

where C(k, η) and l(η) represent the k-th vertex and the length of the η-th cycle, respectively.

Coefficient si[mi(Ji)] is the ratio of the number of functions fi ∈ F
j+
i [mi(Ji)] satisfying
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fi(xj = 0, {xj′; j
′ ∈ Ji − j}) < fi(xj = 1, {xj′; j

′ ∈ Ji − j}) for state {xj′; j
′ ∈ Ji − j} to

Qi[mi(Ji)]/2. This ratio is independent of state {xj′; j
′ ∈ Ji − j}. A detailed derivation is

given in the Supplemental Material [48].

In Eq. (13), the contribution of link j → i is given by
∑

mi(Ji)
siψiQi, the sign of which

can be easily obtained even if si and Qi are unknown when only either ψi[mi(Ji)] > 0 or

ψi[mi(Ji)] < 0 is assumed for all mi(Ji). The total contribution of the η-th cycle, the sign of

which corresponds to the predominance of either positive or negative feedback on the η-th

cycle, changes 〈n〉. Although positive and negative feedbacks are known as the necessary

conditions for the existence of multiple FPs and a limit-cycle oscillation, respectively [37–

39], the sufficiency of changing 〈n〉 is verified. Equation (13) also provides the upper and

lower bounds of 〈n〉, which are expressed as 0 ≤ 〈n〉 ≤ 2ν .

Finally, we numerically show the frequency distributions of n. In Fig. 4, example (a) has

a different network topology from those of (b), (c), and (d). In (b), (c), and (d), different

{Pi(fi)} were assumed. We employed link condition (ii) and generated fi randomly under

p-bias (p = 0.6). In (a) and (b), Pi(fi) ∝ pM(1 − p)2
Ki−M if fi had M on-state outputs.

Examples (c) and (d) contained further assumptions. In (c), Pi for i = 3, 5 were replaced by

P3(f3 = x1x2x6) = P5(f5 = x2x3) = 1. In (d), the above-mentioned symmetric violation of

stochastic neutrality was introduced into three cycles, where ψi[mi(Ji)] = ±P̃i[mi(Ji)] were

assumed consistent with the signs shown. We generated 105 realizations of {fi} for each

network.

The relative frequency distributions of examples (a-d) are shown in Fig. 4. In (b) and

(c), relative frequency for n = 0 was approximately 75% whereas n ≥ 6 was rarely observed.

Due to the theorem, the average was 1 in (a-c). In (d), 〈n〉 = 5.2 was obtained, since three

positive and no negative feedbacks were realized.

Controlling only network topology does not contribute to changing 〈n〉 even under a p

bias and a canalizing bias. The sufficient condition for increasing 〈n〉 is the predominance

of positive feedbacks. Real systems exhibiting a large plurality of FPs would not only have

many topological cycles, but would also contain elaborate regulatory rules that collectively

compose positive feedbacks.

The expected number of periodic attractors is also important, since there is an alternative

idea whereby a periodic attractor can correspond to a cell type in cell differentiation [49].

A key in our formulation for FPs is the invariance of variable Ri under xj → x̄j (j ∈ Ti and
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FIG. 4. Numerically obtained frequency distributions of the number of FPs for each BN (a)-(d).

(a,b) Boolean functions for all vertices were randomly generated under the p-bias (p = 0.6). (c)

The functions f3,5 were assumed to be only AND functions. (d) The links labeled as + and −

were constrained in positive and negative interactions, respectively. The average values were (a-c)

〈n〉 = 1.0 and (d) 5.2.

j 6= i). In a similar way, creating a new invariant variable by introducing an appropriate

class of functions can provide a key technique to analyze the expected number of attractors

with a certain oscillation period in a BN with arbitrary topology.
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