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Coherent, large scale dynamics in many nonequilibrium physical, biological, or information trans-
port networks are driven by small-scale local energy input. Here, we introduce and explore an ana-
lytically tractable nonlinear model for compressible active flow networks. In contrast to thermally-
driven systems, we find that active friction selects discrete states with a limited number of oscillation
modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict
the stationary states of noisy networks and find good agreement with a Bayesian state estimation
based on a hidden Markov model applied to simulated time series data. Our results suggest that the
macroscopic response of active network structures, from actomyosin force networks to cytoplasmic
flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipar-
tition in thermal equilibrium. The model is also well-suited to study topological sound modes and
spectral band gaps in active matter.

PACS numbers: 47.63.-b, 05.70.Ln, 05.65.+b 05.40.-a

Active networks constitute an important class of
nonequilibrium systems spanning a wide range of scales,
from the intracellular cytoskeleton [1] and amoeboid or-
ganisms [2–4] to macroscopic transport networks [5].
Identifying generic self-organization principles [6, 7] that
control the dynamics of these biological or artificial far-
from-equilibrium systems remains one of the foremost
challenges of modern statistical physics. Despite promis-
ing experimental [3, 8–10] and theoretical [1, 4, 11–13]
advances over the past decade, it is not well understood
how the interactions between local energy input, dissi-
pation and network topology determine the coordinated
global behaviors of cells [8], plasmodia [3] or tissues [14].
Further progress requires analytically tractable models
that help clarify the underlying nonequilibrium mode se-
lection principles [15].

We in1998GaHaJuMatroduce here a generic model for
active flows on a network, motivated by recent experi-
mental studies of bacterial fluids [12, 16] and ATP-driven
microtubule suspensions [17] in microfluidic channel sys-
tems. Building on Rayleigh’s work [18] on driven vibra-
tions and the Toner-Tu model of flocking [19], the theory
accounts for network activity through a nonlinear fric-
tion [19–21]. We work in a fully compressible framework
allowing accumulated matter at vertices to affect flow
through network pressure gradients, generalizing previ-
ous work on incompressible pseudo-equilibrium active
flow networks [22, 23], as suited to the many biological
systems exhibiting flexible network geometry [3] or vari-
ations in the density of active components [7]. Although
inherently nonlinear, the model can be systematically an-
alyzed through perturbation theory. Such analysis shows
how slow global dynamics emerge naturally from the fast
local dynamics, enabling prediction of the typical states
in large noisy networks; these states have significantly

fewer active modes than for energy equipartition [24] in
thermal equilibrium. More broadly, our model provides
an accessible framework for investigating generic physi-
cal phenomena in active systems, including topologically-
protected sound modes [7] and the influence of spectral
band gaps (SM [25]).

We consider activity-driven mass flow on an
arbitrarily-oriented graph G = (V,E) with V = |V| ver-
tices and E = |E| edges. The elements of the V × E
gradient (incidence) matrix ∇ are ∇ve = −1 if edge e
is oriented outwards from vertex v, ∇ve = +1 if e is
oriented inwards into v, and ∇ve = 0 otherwise. The dy-
namical state variables are the deviations from the mean
mass %̄ = M/V on the nodes, (%1(t), . . . , %V (t)), and the
mass fluxes on the edges, (φ1(t), . . . , φE(t)), governed by
the non-dimensionalized (SM [25]) transport equations

%̇v =
∑
e

∇veφe, (1a)

φ̇e = −
∑
v

∇>ev%v + ε
µ− φ2e
1 + φ2e

φe +
√

2Dξe(t), (1b)

where ξe(t) is standard Gaussian white noise. Equa-
tion (1a) ensures mass conservation. The first term
on the r.h.s. of Eq. (1b) represents the gradient of an
ideal gas-type node pressure pv ∝ %v, corresponding to
the leading term in a virial expansion; the second term
is a Toner-Tu type (SM [25]) active friction force de-
rived from a depot model [20, 26] with coupling ε > 0
and active–passive control parameter µ, which drives
the edge fluxes φe towards preferred values ±√µ when
µ > 0. Many networks have non-uniform edge and ver-
tex weights, which can be incorporated into equations of
identical form to Eqs. (1) with appropriate rescaling of
%, φ, and ∇ (SM [25]).
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FIG. 1. Activity can select a single dominant oscillation mode
on hierarchically weighted networks. (a) The edges in the
graph simulated in (b) and (c) are given weights decreasing
exponentially with their distance from the central red path.
(b) Oscillations in pressure and flux develop primarily along
the central high-weight path (Movie 1). (c) Edge fluxes φe

settle into steady synchronized oscillations as exemplified for
two edges indicated in (b), one on (φ17) and one off (φ59)
the path. (d) Plotting the time-dependent amplitude of each
analytically-determined flow eigenmode confirms selection of
a single oscillatory mode. The ten modes with the highest
average amplitude in this simulation run are pictured; the
marked top two rows are oscillatory modes, while the remain-
ing rows are cyclic modes. See Fig. S6 for all modes. Simula-
tion parameters were ε = 0.1, µ = 1, and D = 10−4.

Active flow networks described by Eqs. (1) exhibit rich
oscillatory transport behavior, including the mode selec-
tion illustrated in Movie 1 and Fig. 1 for a hierarchically-
weighted network with vertex degrees at most 3 as is typ-
ical of Physarum polycephalum [27]. When this network
is initialized with zero pressure variation and flux, it typ-
ically settles into a quasi-steady state with a single dom-
inant oscillation frequency on the highest-weight path.
This is a manifestation of the fact that single-frequency
selection is the norm on actively driven path graphs, as
we shall show analytically below.

Generally, the features of the steady-state attractor
will be determined by the topology of the subgraph of
high-weight edges, which may be much sparser than the
original network. For this reason, as well as for ease
of analysis and illustration, we will henceforth assume
G to be a tree, as realized in certain peripheral sensory
neurons [28], though in general the full model in Eqs. (1)
is not restricted to any particular class of graph. The
behaviors observed on trees can be extended to denser

graphs by choosing appropriate edge weights.
The complex active flow dynamics encoded by Eqs. (1)

can be understood analytically by considering the basis
of oscillation modes of the network, as we illustrate now
in the fully deterministic case (D = 0). To progress,
we adopt a Rayleigh [18] approximation ε(µ − φ2e)φe for
the active friction (SM [25]). Now, expand the pressure

%v =
∑E
n=1 rn(t)%vn and flux φe =

∑E
n=1 fn(t)φen in the

right and left singular vectors %n = (%vn) and φn = (φen)
of ∇> corresponding to the E = V − 1 non-zero singular
values λn. (On a tree, there is a single zero eigenvalue
of ∇∇> yielding an additional right singular vector for
the pressure, but this corresponds to a constant mass
shift and so can be safely neglected.) Defining mode am-
plitudes A2

n = r2n + f2n, the network energy then takes
the simple form H = 1

2

∑
n λ

2
nA

2
n (SM [25]). When ε

is small there are two distinct timescales, namely the
fast oscillation timescale t and the slow friction timescale
τ = εt, which we separate in the perturbation ansatz
rn =

∑∞
σ=0 ε

σrσn and fn =
∑∞
σ=0 ε

σfσn [29]. Active
friction does not contribute at lowest order, so the O(1)
contribution to each mode (rn, fn) is an uncoupled har-
monic oscillator r0n(t) = A0n(τ) cos[λnt − δn(τ)] and
f0n(t) = −A0n(τ) sin[λnt−δn(τ)] with t-independent am-
plitude A0n and phase δn (SM [25]).

The influence of activity becomes apparent at first or-
der in ε, introducing couplings between mode amplitudes
whose dynamics encode the state selection behavior of
the active network. Requiring that the O(ε) amplitudes
r1n and f1n remain small relative to the leading terms
implies that the secular (unbounded) terms in the first
order equations must vanish [29]. Assuming negligible
mode degeneracies, the slow dynamics of the O(1) mode
amplitudes A0n(τ) are found to obey (SM [25])

d(A2
0n)

dτ
=

(
µ−

E∑
k=1

PnkA
2
0k

)
A2

0n, (2)

where the overlap matrix Pnk = 3
2 (1 − 1

2δnk)
∑
e φ

2
enφ

2
ek

encodes the network topology. Fixed points of Eq. (2)
can then be found by choosing a subset of the A0n to
be zero and solving

∑E
k=1 PnkA

2
0k = µ for A2

0n over the
remaining non-zero modes. If all the non-zero solutions
for A2

0n are positive, then there is a stationary point with
those modes activated (SM [25]).

Activity-driven fixed points with exactly one mode ac-
tive always exist. If only mode p is active at leading or-
der, then A0n =

√
µ/Ppp δnp is a fixed point of Eq. (2).

These amplitudes, which closely match both those calcu-
lated with the full unapproximated active friction force
and those from averages computed over fully nonlinear
simulations (SM [25]), show that as µ crosses 0 there is
a supercritical Hopf bifurcation with A0n ∼

√
µ. How-

ever, the stability of such a single-mode state depends on
topology: our simulations suggest that activity always se-
lects exactly one oscillation mode in simple path graphs,
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FIG. 2. First order perturbation theory accurately predicts the stable states on small trees. (a) A five vertex tree possessing
four nontrivial modes, as illustrated. (b) On the tree in (a), mode amplitudes settle into one of two stable stationary states,
as seen in simulations for three different initial conditions. Modes are ordered by frequency from high (top) to low (bottom).
(c) Simulated mode trajectories (rainbow) in (b) match analytic predictions (blue streamlines) in the subspaces of activated
modes. There are three possible arrangements of nonzero critical points in each 2D subspace: a saddle point on one axis and
a stable node on the other axis (left), a stable node on each axis and a saddle point in the middle (center), or a saddle point
on each axis and a stable node in the middle (right; Movie 2). Higher order effects cause both the convergence to a point with
A2 > 0 in the left and middle plots and the oscillations in the trajectories. Parameters used are ε = 0.5, µ = 1, D = 0.

whereas single-mode states are typically unstable in net-
works with complex topologies. We can use this observa-
tion to model more complex active networks with single
mode selection by appropriately weighting the edges: if
the edge weights for a path are large enough compared to
the weights elsewhere in the network, the path behavior
dominates (Fig. 1).

Insight into stability is provided by the case with up
to two modes active. Writing A0n = A0pδnp + A0qδnq,
Eq. (2) yields

d(A2
0p)/dτ = (µ− PppA2

0p − PpqA2
0q)A

2
0p, (3)

and symmetrically for A2
0q. Depending on the topology-

encoding overlap coefficients Pnk, this gives up to
four fixed points: the zero state A0p = A0q = 0,
which is always linearly unstable; the single-mode state
(A0p, A0q) = (

√
µ/Ppp, 0), which is stable if Ppq > Ppp

and a saddle if not, plus analogously for (0,
√
µ/Pqq);

and, potentially, a mixed state (A∗0p, A
∗
0q) where A∗0p =√

µ (Pqq − Ppq)/
(
PppPqq − P 2

pq

)
with A∗0q defined sym-

metrically. When it exists, the mixed state is either sta-
ble (if P 2

pq < PppPqq) or a saddle (if P 2
pq > PppPqq), but

if one of the single-mode states is stable and one is un-
stable, then one of A∗0p and A∗0q is imaginary and there
is no mixed state. Hence, we have three possible sce-
narios (Fig. 2): one stable single mode and the other
a saddle with no mixed state (Fig. 2b,c; left); two sta-
ble single-mode states with a mixed saddle in-between
(Fig. 2b,c; center); and two single-mode saddles with a
stable mixed state in-between (Fig. 2b,c; right). These
predictions match simulations quantitatively even for rel-
atively large ε beyond the small-ε perturbation regime

(Fig. 2). In fact, simulations show the same qualitative
behavior for ε = 2, suggesting perturbation analysis re-
mains predictive at high activity.

This two-mode analysis yields a simple topological
heuristic for the stability of single-mode states. Since
|φp| = 1, Ppp is small when φp is spread over many edges
and large when φp is localized to a few edges. If φq is
localized to the same edges as φp, Ppq will also be large
and mode p will be stable to perturbations in mode q.
However, if φq is localized to a disjoint set of edges, Ppq
will be a scaled inner product of near-orthogonal vectors
(φ2ep) and (φ2eq) and will be small. Thus localized modes
will be unstable to modes in other regions, while con-
versely if a mode is to be stable alone then it will be
spread out across the entire network. Therefore, a stable
combination of modes will possess significant flows on all
edges of the network.

Biological systems exhibit vastly different macroscopic
and microscopic time scales [30–33]. This phenomenon
is present in our compressible active flow network, where
higher-order nonlinear effects induce slow global time
scales from faster small-scale dynamics. When the
zeroth-order amplitudes A0n are at a fixed point, the
first-order corrections r1n and f1n are harmonic oscilla-
tors with natural frequency λn driven at linear combina-
tions of the frequencies active at zeroth order (SM [25]).
For instance, if two modes p and q are active at zeroth
order, the driving frequencies are 3λp − k(λp ± λq) for
k = 0, . . . , 3. This introduces new, slower timescales
into the dynamics, including oscillations in the energy
H = 1

2

∑
n λ

2
n(r2n + f2n) with frequency λp − λq. Their

magnitude depends on the difference in frequency: slower
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FIG. 3. States on larger trees possess surprisingly few active modes, which can be inferred from time series with non-zero noise.
(a) The mean number of stationary states of Eq. (2) grows exponentially with edges E as 1.77E ≈ (2E)4/5 (solid orange line),

close to the upper bound of 2E states (dashed black line), while the mean number of stable states grows as 1.21E ≈ (2E)1/4

(solid blue line). We counted states on all nonisomorphic trees with E ≤ 14 edges (filled circles) and on a random sample of
∼ 175 trees per point for 15 ≤ E ≤ 24 (open circles). Averages are over trees with a fixed number of edges. (b) As E increases,
both the mean and the variance of the distribution of trees with each number of stable states increase rapidly. (c) Distribution
of the average number of modes active in a stable state. The mean over trees scales like 0.26E ≈ E/4 (solid line), significantly
below E/2 expected if modes were selected randomly. (d) Two example trees indicated in (a-c) by the corresponding colored
symbols. Stable states on paths (×) always only activate one mode; complex trees (+) have more modes active. (e) Noisy
networks (D > 0) transition stochastically between stable states, exemplified by an amplitude-time trace for the tree shown.
Modes are ordered by frequency from high (top) to low (bottom). Simulation parameters are ε = 0.5, µ = 1, D = 5 × 10−3.
(f) States found by vbFRET from simulations on the tree in (e) (SM [25]). The second, first, and fifth columns are states seen
in (e), indicated by the colored bars above. (g) States predicted by Eq. (2) for the tree in (e). The first five states in (f) match
those in (g); the sixth column in (f) is likely a transient combination of analytically stable states.

oscillations, driven by modes with similar frequencies
λp ≈ λq, have higher amplitudes (SM [25], Fig. S7).

The number of activated modes in an arbitrary com-
pressible active network depends on intricate interac-
tions between local activity and global flow configura-
tions. The total number of available modes is equal to
the number of edges E, meaning that, were each com-
bination of modes to be a fixed point, a tree could have
up to 2E stationary states. To see how the true number
of stationary and stable states depends on tree size, we
performed an exhaustive numerical fixed point search of
Eq. (2) over a large sample of trees with E ≤ 24 (Fig. 3a-
d). The naive upper bound of 2E suggests exponential
growth of the mean number of steady states with edges
E; this is indeed what we see, going as ∼ (2E)4/5. How-
ever, though still exponential in E, the mean number
of stable states is much smaller at ∼ (2E)1/4 (Fig. 3a).
Remarkably, these stable states have only ∼ E/4 modes
active on average (Fig. 3c) in stark contrast to the acti-
vation of all E modes under thermal equipartition [24].
Path-like topologies lead to even more dramatic reduc-
tions in the number of modes active (Fig. 3c), suggesting
that a biological system can further reduce the number

of active modes through an optimal choice of topology;
moreover, hierarchically tuned edge capacities as realized
in Physarum [3, 27] can further enhance mode selection
even in non-tree topologies (Fig. 1).

Real active transport networks will have some nonzero
level of thermal or athermal noise [34]. Provided the noise
is not too large, it will render previously stable states now
only metastable, with flow patterns exhibiting small fluc-
tuations around these metastable states punctuated by
noise-driven stochastic transitions between them [22, 34].
Long-time simulations of Eqs. (1) with D > 0 therefore
offer an independent numerical way to find stable fixed
points of the amplitude dynamics. We use vbFRET [35],
a variational Bayesian analysis of a continuous time hid-
den Markov model, to identify states from simulated time
series. Almost all of the states discovered by vbFRET
match stable states predicted by Eq. (2) even in the pres-
ence of non-negligible noise (Fig. 3e-g), justifying the sim-
plifications used in deriving Eq. (2). This also promises
that Bayesian methods like vbFRET will function as re-
liable inference tools for experimental data from real-life
active flow networks [3, 10].

Beyond active density oscillations [12], the above the-
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oretical framework can be used to probe the effects of
topology on the physical properties of complex active sys-
tems. For instance, it was recently shown that continuum
Toner–Tu systems in finite lattice confinement possess
topologically protected edge-localized sound modes [7].
Similar edge modes can be reproduced in our coarse-
grained model through a simplified network represen-
tation of complex channel geometries (SM [25] and
Movie 3). In addition, generalizing to allow different ef-
fective weights at vertices opens up band gaps, reflected
in the excitation spectrum of spontaneous activity modes
(SM [25]). As we focus on phenomenological properties
shared by many active systems, akin to the Toner–Tu
approach [19], the results and techniques presented here
promise insights into the mode selection mechanisms gov-
erning a wide range of non-equilibrium transport and
force networks.
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bridge (F.G.W.), and an Alfred P. Sloan Research Fel-
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