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In the half-filled zero-energy Landau level of bilayer graphene, competing phases with sponta-
neously broken symmetries and an intriguing quantum critical behavior have been predicted. Here
we investigate signatures of these broken-symmetry phases in thermal transport measurements. To
this end we calculate the spectrum of spin and valley waves in the ν = 0 quantum Hall state of bi-
layer graphene. The presence of Goldstone modes enables heat transport even at low temperatures,
which can serve as compelling evidence for spontaneous symmetry breaking. By varying exter-
nal electric and magnetic fields, it is possible to determine the nature of the symmetry breaking.
Temperature-dependent measurements may yield additional information about gapped modes.

Introduction.—The zero-energy Landau level of bilayer
graphene has emerged as an intriguing experimental plat-
form to study interaction-induced spontaneous symmetry
breaking and competing orders. Following early theoret-
ical work on quantum Hall ferromagnetism in graphene
[1–12], several experiments have gathered evidence for
a rich phase diagram of integer and fraction quantum
Hall states in monolayer and bilayer graphene [13–23].
Of particular interest are the ν = 0 states, where short-
range interactions on the lattice scale may lead to the
formation of insulating phases and spontaneous symme-
try breaking of spin or isospin (valley) degrees of freedom
[24, 25]. Indeed, experimental observations based on elec-
trical transport and capacitive measurements [18, 19, 23]
seem consistent with the phase diagram proposed in
Refs. [24, 25], however, direct evidence for spontaneous
symmetry breaking remains elusive.

As an alternative approach to charge based measure-
ments, we propose to study broken-symmetry phases in
the ν = 0 quantum Hall state of bilayer graphene by
thermal transport. At low temperatures, certain phases
with spontaneous symmetry breaking can support heat
flow via gapless spin or isospin waves, whereas heat con-
duction is blocked in phases without spontaneous order
and a gapped spectrum of collective excitations. Hence
thermal transport can yield direct evidence for sponta-
neous symmetry breaking and provide detailed informa-
tion about collective modes. The technique is comple-
mentary to previous experiments as it is sensitive to both
spin and isospin degrees of freedom and addresses in-
sulating samples. In a broader context, thermal trans-
port in graphene has recently been applied to study the
breakdown of Fermi liquid behavior [26] as well as exotic
electron-phonon scattering mechanisms [27, 28].

A possible experimental setup is shown in Fig. 1(a). A
graphene bilayer is contacted by leads at different tem-
peratures, which can be measured separately as in recent
experiments [28–31]. A strong perpendicular magnetic
field drives the system into a quantum Hall regime and
induces a Zeeman energy εZ . The magnitude of εZ can
be tuned independently by an additional in-plane field,
as the interactions in graphene quantum-Hall states only
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FIG. 1: (a) Experimental setup: bilayer graphene in per-
pendicular magnetic and electric fields between two metallic
leads. (b) Diagrammatic representation of the vertex func-
tion ΓA,ab comprising the Fock contribution of the long-range
Coulomb interaction (wavy line) and Hartree and Fock con-
tributions of the anisotropic short-range interaction (dotted
line). (c) Thermal conductance from particle-hole excitations
at T = 1 K as a function of Zeeman energy and displacement
field [32]. Inset: phase diagram of the ν = 0 state in bilayer
graphene. The axes are the same as in the main plot.

depend on the perpendicular component. A perpendicu-
lar electric field induces a displacement field εV between
the two layers. In the zero-energy Landau level, the layers
are coupled to the isospin index and thus εZ/V control the
spin (isospin) polarization. Before introducing our model
we briefly outline the central result of our work. Fig-
ure 1(c) shows the contribution to the low-temperature
thermal conductanceGth from collective modes as a func-
tion of εZ and εV . Comparison with the phase diagram
in the inset reveals that thermal transport exhibits clear
signatures of spontaneous symmetry breaking. Heat can
flow via Goldstone modes inside the canted antiferromag-
net (CAF) or partially-layer polarized (PLP) phase due
to spontaneously broken spin or isospin symmetries. In
contrast, the thermal conductance from collective modes
vanishes in the fully layer polarized (FLP) and ferro-
magnetic (FM) phases, where the excitation spectrum
is gapped [32]. Moreover Gth is dramatically enhanced
near phase transitions, due to the large low-energy den-
sity of states of gapless quadratic modes present at the
critical points.
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Model.—We follow Refs. [24, 25] to describe symmetry
breaking in the lowest Landau level of bilayer graphene
in the Hartree–Fock approximation. We assume a large
Landau level spacing and project onto the lowest Landau
level. The bare Coulomb interactions can be strongly
renormalized by Landau level mixing even at strong fields
[24]. Instead we assume renormalized parameters which
are determined from experiment.

The zero-energy Landau level of bilayer graphene is
eightfold degenerate [1]. The states are annihilated by
operators ca,k with index a = {na, α} combining or-
bital index na = 0, 1 and SU(4) index α that accounts
for spin and isospin. We shall use the basis Ψa(r) =∑
k 〈r|ψa,k〉 ca,k, where |ψa,k〉 = χα |na, k〉 with χα an

SU(4) spinor and |n, k〉 the Landau level wavefunctions.
The Hamiltonian is H =

∫
d2rΨ†

a(r)Hs,αΨa(r) + Hi,
where Hs = −εZσz − εV τz is the single-particle term, σj
(τj) are Pauli matrices in spin (isospin) space, and Hi =

(1/2)
∑
abcd

∫
d2rd2r′Ψ†

a(r)Ψ†
b(r

′)Ψc(r
′)Ψd(r)Vαβγδ(r −

r′) with Vαβγδ(r) = (e2/εr)δαδδβγ + δ(r)Wαβγδ describes
Coulomb interactions. Introducing the parameters
ux = uy = u⊥ and uz the short-range contribution can
be expressed as Wαβγδ = πl2B

∑
j=x,y,z uj(τj)αδ(τj)βγ ,

with lB the magnetic length [24, 25]. Our model neglects
terms of higher order in the interaction which break the
U(1) isospin symmetry down to a discrete C3 symmetry
due to the lattice structure of graphene.

Guided by experiment [33], we shall use the follow-
ing parameters appropriate for a perpendicular magnetic
field of B⊥ = 5T: εZ = 3 K (Figs. 2 and 3), u⊥ = −7 K,
uz = 20 K, and Uc = 100 K. Assuming a sample width
of W = 5µm, we estimate a thermal conductance of the
Goldstone mode in the CAF phase of Gth = 17 pW/K at
T = 1 K [33], which is accessible in experiment [28].

Excitations within the ν = 0 Landau level.—We cal-
culate the spectrum of intra-Landau-level particle-hole
excitations following Ref. [34] from the response to an
operator θA in SU(4) spin space

χA(k,ω) =
∑
ab

∑
q1,q2

〈q1a|eikrθ†A|q2b〉

×
∫
dω′

2π
Ga(ω + ω′)Gb(ω

′)ΓA,ab(q1, q2;k, ω), (1)

where the vertex part ΓA is given by the diagrams shown
in Fig. 1(b). The excitation spectrum can be found from
the poles of the response function χA. A tedious but
straightforward calculation [33] yields the equation∑
cd

[δacδbd[(fc − fd)ω − Exc,cd]− Ṽabcd(k)]Bcd = 0, (2)

where Exc is the exchange energy, which accounts for
single-particle and self energy contributions, and Ṽabcd
denotes interaction matrix elements comprising Hartree
and Fock contributions [33]. This equation has to be
satisfied for all pairs (a, b) and (c, d) with one occupied
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FIG. 2: (a) Excitation spectrum in the CAF phase for
εV = 3 K. The two low-energy modes (red solid and dashed)
are spin waves at low wavevectors, while the higher-energy
modes (black dotted) correspond to isospin fluctuations. In-
set: full spectrum with energies up to ∼ Uc. (b) Excitation
spectrum at εV = 19.2± 0.1 K on the two sides of the CAF–
PLP transition. We use the same color coding as in (a) for
the spectrum on the CAF side and green solid lines on the
PLP side.

and one empty state. In the limit of large Coulomb en-
ergy U ′

c = N0Uc � u⊥, uz, with Uc =
√
π/2(e2/εlB) and

N0 = 89/224, fluctuations of the orbital index n are sup-
pressed [4, 10] and at low energies the resulting 32 × 32
eigenvalue problem can be further reduced [33] to an 8×8
problem. Incidentally, the resulting eigenvalue equation
has the same analytical form as for monolayer graphene
when εV = 0 and N0 = 1/4. Hence, our results can also
be applied to monolayers (see also [35]).

The 8 × 8 matrix can be readily diagonalized and we
obtain four low-energy modes along with their particle-
hole symmetric partners. We expand the spectrum at
long wavelength, klB � 1, and find in the CAF phase,
where u⊥ < 0,

ω1 'vk, v = 2lB sin θs
√
|u⊥|U ′

c, (3)

ω2 '2εZ + k2l2BU
′
c(ε

2
Z + 4u2⊥)/4|u⊥|εZ , (4)

ω3,4 '∆c ∓ 2εV + k2l2BU
′
c(εZ + 4|u⊥|uz)/2|u⊥|∆c (5)

with ∆2
c = 4(uz + |u⊥|)(uz−|u⊥|+ ε2Z/2|u⊥|). The spec-

trum is shown in Fig. 2(a). We find a gapless mode in
agreement with the spontaneously broken U(1) spin sym-
metry in the CAF phase and the next higher mode with a
gap of 2εZ , which corresponds to spin fluctuations along
the Zeeman field direction. The velocity of the Goldstone
mode depends on the canting angle cos θs = εZ/2|u⊥|.
The higher modes ω3/4 are associated with isospin fluc-
tuations.

Increasing the Zeeman field polarizes the spins along
the field direction until the system enters the FM phase
when θs = 0 and the velocity of the Goldstone mode
vanishes. The gapless modes thus becomes quadratic at
the critical point and a gap opens as the system enters the
FM phase [33] and spin fluctuations around the Zeeman
field direction are further suppressed by an increasing
field strength.

If, instead, we increased the displacement field εV , the
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CAF phase transitions into the PLP phase when εV =
∆c/2 [25]. At this point the quadratic mode ω3 is gapless
in addition to ω1. Interestingly the excitation spectrum
is discontinuous at the critical point reflecting the first-
order nature of this transition. The spectrum in the PLP
phase for klB � 1 is given by [33]

ω1 'vk, v ' lB sin θm
√

2U ′
c(uz + |u⊥|), (6)

ω2 '∆p + k2l2BU
′
c[(uz + |u⊥|) sin2 θm − 4|u⊥|]/∆p, (7)

and ω3,4 = ω2∓2εZ . Here we have introduced the canting
angle of the isospin cos θm = εV /(uz + |u⊥|) and ∆2

p =
8|u⊥|(ε2V +u2⊥−u2z)/(uz+ |u⊥|). The PLP phase features
a Goldstone mode ω1 due to the broken U(1) symmetry
in the isospin sector, along with several gapped modes.
If the CAF–PLP transition is approached from the PLP
side, ω3 becomes gapless. The spectra on the CAF and
PLP side of the transition are compared in Fig. 2(b).
The three lowest modes coincide in both phases at k = 0,
but have different dispersions. Interestingly, another low-
energy mode with a gap of 4εZ = 12 K is present in the
PLP phase. In contrast, the fourth mode in the CAF is
shifted to much higher energies, 4εV ' 77 K.

Further increasing εV leads to a stronger polarization
of the isospins and the system enters the FLP phase once
θm = 0. This transition is continuous and the gapless
mode becomes quadratic at the critical point similar to
the CAF–FM transition. On the FLP side this mode
acquires a gap, which grows with increasing displacement
field as isospin fluctuations are suppressed [33].

Thermal conductance.—Thermal transport at low tem-
peratures can indicate the presence of neutral low-energy
excitations. Importantly, the broken-symmetry phases
CAF and PLP support thermal transport via Goldstone
modes and can thus be readily distinguished from phases
with a gapped spectrum and exponentially suppressed
thermal conductance at low temperatures. In order to re-
late the thermal conductance to the presence of particle-
hole excitations we must rule out other origins of heat
transport, most importantly, electrons and phonons.

At low temperatures we can safely ignore electronic
heat transport in the insulating phases CAF, PLP, and
FLP [36]. While the FM phase is also insulating in the
bulk, it has conducting edge states [18, 19], which could
contribute to heat transport. The electronic contribu-
tion is linear in T and can be considerably smaller than
the bulk conductance in the CAF phase ∝ T 2 [37]. An
electronic heat current can in principle be suppressed by
measuring in a Corbino geometry [38] or by adding side
leads acting as heat sinks for the edge states.

Heat transport via phonons in nonsuspended samples
can presumably be neglected in the setup of Fig. 1(a).
Phonons will thermalize with the substrate before reach-
ing the drain and thus energy transfered to phonons is
lost. We expect such losses to be small at low temper-
atures due to the high power-law decay of the electron-

phonon energy relaxation rate ∝ T 4 in graphene [27, 30].
In the following, we focus on the heat current carried

by particle-hole excitations and ignore other contribu-
tions. We model the leads as black bodies assuming suf-
ficiently rough interfaces between leads and sample. We
furthermore assume ballistic transport through the sam-
ple ignoring defects and scattering between SU(4) spin
waves. Ballistic transport of magnons on a millimeter
scale has been observed in the three-dimensional anti-
ferromagnet Nd2CuO4 [39]. In contrast, earlier works
on quasi-two-dimensional antiferromagnets found typical
mean free paths of ∼ 100 nm attributed to scattering
off defects [40–42]. However, it is reasonable to assume
a considerably longer scattering length in high-quality
graphene samples, where such defects are not present.
The magnon-magnon scattering rate in a two dimensional
antiferromagnet for modes with vk ∼ T is ∼ vk(T/2πρ)2

[43], where ρ ∼ U ′
c is the spin stiffness. In the CAF

phase at T = 10 K this yields a magnon-magnon scatter-
ing length of several microns.

In two-dimensions the heat current through a medium
of width W with an isotropic dispersion ω(k) is given
by [44] J = (W/2π2)

∫
dk kω(k)vknB [ω(k)], where vk =

∂kω(k) and nB(ω) is the Bose distribution. Assuming the
sample to be much longer than the thermal wavelength
(λ ∼ 300 nm at T = 1 K [33]), we can neglect evanes-
cent modes and resonances. We then obtain the thermal
conductance as Gth = (JL − JR)/∆T where JL/R are
the heat currents from the left and right reservoir with
temperature TL/R and ∆T = |TL − TR| � TL.

The thermal conductance of the different phases can
be compared in a single sample by tuning εV via a gate
voltage and εZ by an in-plane magnetic field. Figure 1(c)
shows the thermal conductance at T = 1 K along with the
corresponding phase diagram in the inset. The phases
with broken symmetries, CAF and PLP, exhibit thermal
transport, whereas the conductance is exponentially sup-
pressed inside the gapped phases, FLP and FM.

The phase transitions give rise to particularly strong
signatures in thermal transport. At the first-order CAF–
PLP transition a mode with a quadratic dispersion be-
comes gapless in addition to the linear Goldstone modes
present in both phases [cf. Fig. 2(b)]. Thus once the
energy minimum of the quadratic mode becomes compa-
rable to temperature, the available phase space for heat
conduction increases dramatically. The continuous tran-
sition between PLP and FLP does not involve any ad-
ditional low-energy modes, but the linear dispersion of
the gapless mode in the PLP phase becomes quadratic
at the critical point. The large density of states at the
bottom of the quadratic band causes Gth to peak at the
transition.

We emphasize that all phase transitions have promi-
nent signatures in the thermal conductance. This con-
stitutes an important result of our work. While previ-
ous experiments based on charge transport have iden-
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FIG. 3: (a) Thermal conductance normalized by T 2 inside the
three phases CAF, PLP, and FLP at εV = 15 K, 25 K, 31 K
(solid lines) as well as near the phase transitions CAF–PLP
and PLP–FLP at εV = 19.21 K, 27 K (dashed lines). (b) Ther-
mal conductance vs εV for various temperatures. Curves have
been offset for clarity (the dashed lines indicate zero conduc-
tance) and the vertical gray lines mark the phase transitions.

tified phase boundaries [14, 16, 18] it remains unclear
which transitions should exhibit signatures in such exper-
iments [45, 46]. Thus thermal transport measurements
could possibly lead to the discovery of previously unre-
solved phase transitions. Moreover, they could determine
whether the layer-polarized state observed in experiment
is a broken-symmetry PLP state or a gapped FLP state.

While low-temperature measurements are sufficient to
determine the phase diagram, more detailed information
about the excitation spectrum can be gained by vary-
ing temperature. The conductance of a linear disper-
sion, ω(k) = vk, follows the Stefan–Boltzmann law in
two dimensions Gth ∼ WT 2/v. In contrast, a gapless
quadratic mode leads to a weaker power-law dependence
Gth ∝ T 3/2 [33]. The conductance of a gapped spectrum
is exponentially suppressed at low temperatures.

In the following we concentrate on the three electroni-
cally insulating phases CAF, PLP and FLP. Figure 3(a)
shows the temperature dependence of the conductance
divided by T 2 within the three phases and at the tran-
sition points. The thermal conductance in FLP shows
an activated behavior from which one can extract the
gap in the excitation spectrum. The conductance in the
PLP phase follows approximately a T 2 law indicating
that only the linear Goldstone mode has significant occu-
pation up to a temperature of T = 5 K. In the CAF phase
Gth ∝ T 2 at low temperatures T . 1 K indicating a Gold-

stone mode. At temperatures above 3 K the conductance
follows a T 2 law with a larger proportionality constant,
which implies that additional gapped low-energy excita-
tions become occupied above T = 1 K. At the critical
points between CAF, PLP and FLP, the conductance in-
creases slower than T 2 and thus Gth/T

2 decreases. This
is a signature of gapless quadratic modes with a charac-
teristic T 3/2 behavior. Hence the conductance peaks at
phase transitions become particularly pronounced at low
temperatures.

Additional information can be obtained from traces
of the conductance as a function of displacement field
for fixed Zeeman energy shown in Fig. 3(b). Interest-
ingly, the signature of the CAF–PLP transition changes
with temperature. A strong peak at low-temperatures
turns into a pronounced discontinuity above T = 10 K.
This clearly signals a first-order phase transition, where
the excitation spectrum changes discontinuously between
the two phases. The most striking difference between
the spectra shown in Fig. 2(b) is an additional mode in
the PLP phase with an energy minimum of 12 K, which
causes a sizable jump in the conductance. This discon-
tinuity survives with increasing temperature until high-
energy modes at around ω = 70 K get populated.

The PLP–FLP transition, in contrast, is of second-
order and thus the conductance is continuous. Instead,
the derivative of the conductance with respect to εV
jumps at the critical point, signaling a higher-order phase
transition. The FLP phase shows activated transport
whose activation energy grows with distance from the
critical point. This is a clear signature of the FLP phase
where the gap increases with layer polarization.

The conductance as a function of displacement field
can distinguish CAF and PLP phases and clarify the
character of the gapless modes. In the CAF phase the
lowest-energy excitations are spin waves, which leave the
mean isospin polarization unchanged. Hence the Gold-
stone mode velocity does not depend on the displace-
ment field which acts only on isospin degrees of freedom
and the conductance remains constant in a broad range
of fields. In the PLP phase the Goldstone mode is an
isospin wave and hence its velocity decreases with εV
in agreement with Eq. (6). Consequently, the thermal
conductance grows when increasing εV according to the
Stefan–Boltzmann law, Gth ∝ 1/v. This distinctive be-
havior is clearly visible at T = 0.2 K and 1 K in Fig. 3(b).

Alternatively, one can verify the magnetic nature of the
Goldstone mode in the CAF phase by tuning the Zeeman
field, which changes the spin-wave velocity but leaves the
isospin-wave velocity in the PLP phase unchanged. Thus
by tuning εV and εZ one can elucidate the nature of the
broken symmetry in the ground state and the spin-isospin
structure of the Goldstone modes.
Conclusions.—Low-temperature thermal transport in

the ν = 0 state of bilayer graphene exhibits unique sig-
natures of various ordered phases and phase transitions.
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Obtaining evidence of the CAF and PLP states would
be particularly intriguing as the first-order transition be-
tween these states closely resembles the antiferromagnet–
superconductor transition in some high Tc superconduc-
tors [35, 45, 47] and may exhibit deconfined quantum
criticality [48]. It would be interesting to extend this
work to study other insulating phases in two dimensions
such as in moiré heterostructures [49]. Another exciting
future direction is to study the bulk thermal transport
of broken-symmetry quantum Hall states at other filling
factors which could possibly be achieved in a Corbino
geometry.

During the final stages of this work we became aware
of Ref. [50] which also calculates the excitation spectrum
of bilayer graphene.

We acknowledge financial support by the STC Cen-
ter for Integrated Quantum Materials, NSF Grant No.
DMR-1231319.
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