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We numerically investigate and experimentally demonstrate an in-situ topological band transition
in a highly tunable mechanical system made of cylindrical granular particles. This system allows us
to tune its inter-particle stiffness in a controllable way, simply by changing the contact angles between
the cylinders. The spatial variation of particles’ stiffness results in an in-situ transition of the
system’s topology. This manifests as the emergence of a boundary mode in the finite system, which
we observe experimentally via laser Doppler vibrometry. When two topologically different systems
are placed adjacently, we analytically predict and computationally and experimentally demonstrate
the existence of a finite-frequency topologically protected mode at their interface.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

INTRODUCTION

Topological insulators (TI) constitute an intense area
of recent interest within condensed matter physics. TIs
support directional electron transport on their surface,
and this transport is immune to defects [1]. The existence
of such a surface state has a remarkable correspondence
to the non-trivial topological invariants of the bulk of
TIs [2]. Therefore, by knowing the topology of the bulk,
one can predict the response on the surface/edge of the
material. This response is robust against defects on the
surface as long as the topology of the bulk is preserved.
Such topological characterization has naturally emerged
as a tool to design novel mechanical structures with un-
conventional vibration properties on their surfaces [3–8].
The study of these mechanical structures not only re-
alizes the topological phenomenon in easily controllable
and observable macro-scale systems, but also has poten-
tial to shape a new design paradigm for structural appli-
cations, such as vibration isolation and energy harvesting
[9]. At the same time, the paradigm of TIs has had a sig-
nificant impact in other areas, e.g., linear and nonlinear
optics [10–14].

A dimer system such as 1D Su-Schrieffer-Heeger (SSH)
model provides the basic framework to understand band
topology [15–18]. The direct mechanical analogue of such
a dimer has been recently suggested [19]. This sys-
tem has a phononic band-gap near zero frequency, and
in turn, can support zero-frequency topological modes.
Deviating from this model, one can also arrive at a me-
chanical dimer that results in a non-zero-frequency band-
gap, potentially leading to finite-frequency topological
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modes [20]. This could be achieved by tailoring the
on-site potentials in the standard SSH model. Such a
system would be especially interesting as it would en-
able us to understand how the topological framework
can be used to predict and tailor energy localization on
the edges/interfaces of a structure. To study this phe-
nomenon in detail, one would ideally need a system that
allows a smooth control over its topological character-
istics, in order to closely observe its effects on the vi-
bration response of the structure. Achieving such tun-
ability is extremely challenging in experimental settings,
since it requires well-controlled, in-situ manipulation of
either mass or stiffness. Changing the masses of the
dimer lattice demands manual reassembly of systems’
constituents [21, 22]. Altering the stiffness values via ex-
ternal couplings, e.g., magneto-elasto [23], electro-elasto
[24], and photo-elasto [25] interactions, could make the
system cumbersome for structural uses. The need of pre-
cise actuation and measurement adds up to this chal-
lenge. This explains why in-situ topological band tran-
sition for finite-frequency elastic vibrations has not been
demonstrated experimentally. A design that can address
this challenge would not only contribute to our general
understanding of topological mechanical systems; it also
holds promise towards catalyzing the implementation of
stand-alone structures with tunable energy localization
characteristics.

For this purpose, we use a granular system made of
cylindrical particles interacting through the Hertz con-
tact law [26]. This system is highly tunable in that the
inter-particle stiffness can be changed simply by altering
the contact angles between cylinders [27]. Such a ver-
satile structure has been recently exploited for manipu-
lating stress waves in linear [28], linear time-dependent
[29], and nonlinear media [30]. To overcome the experi-
mental challenges with regard to controlling the contact
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FIG. 1: Schematic of experimental setup. The top inset illus-
trates a cut section of the 3D-printed enclosure. The bottom
inset shows the contact angles in the dimer chain and the
representative spring-mass system.

angles and conducting precise measurements, we devise
an experimental setup of a tunable, stand-alone cylindri-
cal particle system. This involves 3D-printed enclosures
intended to support and tune the granular chain and to
facilitate particles’ velocity measurements through a laser
Doppler vibrometer (LDV). Using this table-top setup,
we validate the in-situ topological band transition in the
system by detecting the emergence of an experimentally
measured boundary mode. We further demonstrate the
existence of a topologically protected mode at the inter-
face of two topologically distinct granular chains. Lastly,
we theoretically calculate the frequency of the topologi-
cally protected mode using symmetries in its shape, and
show that it has an excellent agreement with numerics
and experiments.

EXPERIMENT AND NUMERICAL SETUP

The experimental setup consists of a chain of short
cylinders placed inside 3D-printed enclosures stacked ver-
tically (Fig. 1). Each enclosure along with its cylinder
can be independently rotated about its central axis to
change the stacking angles of the particles. We main-
tain periodically varying two contact angles, α0 and α,
such that the system resembles a dimer configuration. To
demonstrate the topological transition, we fix α0 to 20◦

and vary only α from 5◦ to 40◦. The chain is composed of
27 cylinders, and all cylinders are made of fuzed quartz
(Young’s modulus Y = 72 GPa, Poisson’s ratio µ = 0.17,
and density ρ = 2187 kg/m3) with identical diameter and
length of 18 mm. A piezo-actuator excites the bottom of

the chain to send a frequency sweep signal from 3 kHz to
30 kHz. A free weight (25 N) is placed on the top of the
chain to provide initial static compression to restrict the
system dynamics to the linear regime. We track the ve-
locity of each cylinder using an LDV mounted on a guide
rail. Note that we have judicially designed the enclosure
to facilitate the passage of the laser beam emanating from
the LDV in various angles (top inset in Fig. 1).

We use a discrete element method to model the sys-
tem dynamics [31]. We represent the cylinders by lumped
masses, and the contacts by springs following the Hertz
contact law. The force between the i-th and (i + 1)-th
cylinders can be written as Fi = β(αi)[δi +ui−ui+1]3/2,
where β(αi) is the stiffness coefficient for the contact an-
gle of αi; δi is the initial static compression due to the
free weight; ui and ui+1 denote the dynamic displace-
ments of i-th and (i+ 1)-th cylinders in the longitudinal
direction, respectively (see the Supplemental Material for
details [32]). If |ui−ui+1| � δi, as is the case here, we can
linearize the contact law. Hence, the contact between i-th
and (i+ 1)-th cylinders can be assigned to a linear stiff-

ness coefficient, K(αi) = 3
2β(αi)δ

1/2
i . This means that

a dimer configuration with alternating α0 and α angles
can be represented by a lumped mass model with linear
stiffness coefficients, K(α0) and K(α), varying along the
chain (bottom inset of Fig. 1).

For an infinitely long dimer chain, it is straightforward
to establish linear dispersion relation and calculate the
edges of Bloch bands [33]. For a finite lattice, however,
we expect to observe boundary effects. To this end, we
perform the relevant eigenvalue analysis. For an N par-
ticle chain, we use u = [u1, u2, u3, ..., uN ] = U exp jωt,
where U and ω represent amplitude of displacement vec-
tor and angular frequency respectively, t is time, and j is
an imaginary unit. Thus, by neglecting dissipation in the
system, we obtain ΛU = ω2mU , where m is the particle
mass, and Λ is a N × N tridiagonal matrix consisting
of stiffness coefficients, K(α0) and K(α). This finite sys-
tem also accounts for the boundary condition of the finite
system. Specifically, we fix the boundaries by choosing
stiffness values Ka = 2.78×107 N/m and Kw = 1.62×107

N/m at the beginning (actuator side) and the end of the
chain, respectively, to match the experimental data [32].
Using this finite setup, we evaluate eigenfrequencies and
eigenmodes of the system in comparison with analytical
and experimental data.

RESULTS AND DISCUSSIONS

Topological band transition in infinite lattices

We first investigate the topological characteristics of
the infinite dimer lattices. Figure 2 shows three dimer
configurations that represent a topological band transi-
tion within our system. Theoretically obtained Bloch
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FIG. 2: Representative configurations of the infinite dimer
chain to show its topological band transition as a function
of α. (a),(b), and (c) include the Bloch dispersion curves
for α < α0, α = α0, and α > α0, respectively. Bands are
marked with the corresponding topological indices (0 and π)
and the Bloch eigenmodes on their edges ([1, 1] and [1, -1] for
symmetric and anti-symmetric oscillations in the dimer unit
cell, respectively).

dispersion curves are plotted below, showing acous-
tic (lower) and optical (upper) branches [32]. A fre-
quency band-gap spans from (1/2π)

√
2K(α0)/m to

(1/2π)
√

2K(α)/m, and the upper band edge of the opti-

cal band equals (1/2π)
√

2(K(α0) +K(α))/m. We notice
that if α increases, the frequency band-gap first closes at
α = α0 and then opens again. In this process, Bloch
eigenmodes on the edges of the band-gap are also flipped
(see the change between [1, 1] and [1, -1] in Figs. 2(a)
and (c)). This indicates a typical topological band tran-
sition in our system as a function of the angle α. The
system shifts between distinct dimer configurations that
cannot be transformed to each other without closing the
band-gap. The mathematical quantification of this no-
tion can be made by calculating so-called Zak phase for
each band; see the Supplemental Material [32] for de-
tailed calculations.

One notices that the Zak phase of a band directly re-
lates to the symmetry types of Bloch eigenmodes at its
lower and upper band-edges. The Zak phase of 0 indi-
cates the same symmetry type (see Fig. 2(c) where the
Bloch eigenmodes remain the same within the branch).
On the other hand, the Zak phase of π hints the for-
mation of the opposite symmetry type within a band
(Fig. 2(a) where the Bloch eigenmodes are flipped). We
evidently see the topological characteristics of a band-
gap are linked to the sum of the Zak phases of all the
bands below the gap [34]. Therefore, the change in the
Zak phase of the acoustic band confirms the in-situ topo-
logical transition of our infinite lattice system.

FIG. 3: Topological transition and emergence of a boundary
mode in the finite system. (a) Frequency spectrum evolu-
tion as a function of α. Extracted experimental data (gray
markers) match the edges of theoretical bulk bands (shaded
area). Also, experiments (red markers) show the emergence of
boundary mode inside the band-gap, which follow the trend
of numerical simulations (black curve). (b) Zak phase of the
band-gap and its transition at α = α0. (c-e) Numerical (black
markers) and experimental (red markers) boundary mode pro-
files in terms of normalized velocity amplitude at α = 5◦, 10◦,
and 15◦.

Emergence of boundary mode in finite lattices

The topological nature of bulk band-gaps observed
for an infinite lattice manifests itself through the emer-
gence of boundary mode(s) inside the band-gaps for a
finite lattice (i.e., the principle of bulk-boundary corre-
spondence) [1]. Therefore, we expect the existence of a
boundary (local/edge) mode in the current topologically
non-trivial dimer configurations. We extract the cutoff
frequencies and the local mode information from exper-
imental data with α varying from 5◦ to 40◦ in steps of
5◦ (see the Supplemental Material [32] for details). Fig-
ure 3(a) summarizes the modal frequencies of the system
as we vary α. Shaded areas denote modes corresponding
to acoustic and optical branches of dispersion curves, con-
structed theoretically. We observe an excellent match of
experimental data (gray square markers) with the edges
of the theoretical bands. This successfully demonstrates
the band-gap closing and opening mechanism in our tun-
able system.

Due to the finite size of the chain, we experimentally
observe a local mode residing inside the band-gap (red
square markers for α < α0). Black curve data, obtained
through the numerical eigenvalue analysis, follows the
same trend. These are boundary modes localized in the
front of the chain, which are not witnessed when α > α0.
Emergence of these modes from all configurations that
satisfy α < α0 complies well with the change in the band
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FIG. 4: Topologically protected modes arising from dimer
configurations with (a) hard-hard and (b) soft-soft interfaces.
Below are PSD plots obtained from particles’ velocities mea-
sured experimentally. At the bottom are the TP mode shapes
extracted from experiments (red markers) and eigenanalysis
(black markers).

topology at α = α0. In Fig. 3(b), we plot the Zak phase
of the acoustic band as a function of α to support the
aforementioned argument.

In Fig. 3(c)-(e), we show the normalized velocity pro-
files of the boundary modes extracted from the exper-
iments and the eigenanalysis. These exponentially de-
caying profiles match closely between experiments and
numerics. The localization length, however, increases as
we move from α = 5◦ to α = 15◦. This can be explained
by extending the intuitive arguments in [35], according
to which the localization length depends on the stiffness
ratio as ξ ∝ 1/ ln

[
K(α)/K(α0)

]
. Therefore, the local-

ization length becomes large as we increase α for α < α0,
and it is natural to expect that the mode becomes ex-
tended and is lost inside the band in the limit of α→ α0.

We note that the study of these boundary modes, i.e.,
the gap modes in classical lattices, can be traced back
to the pioneering work of Wallis [36]. He extensively
explored the effect of finite boundaries and defects on
the spectrum of ordered lattices in terms of generation of
gap modes. However, the novelty of the first part of this
work is that we have kept the boundary conditions and
the length of the system the same, and experimentally
demonstrated how the change in bulk properties reflects
in the emergence of a finite-frequency boundary mode as
per topological band theory for 1D dimers.

Topological defect and protected modes

We now study the ramifications of having two topo-
logically different dimer configurations connected to each

other. We assemble two dimer chains both with α0 = 10◦

(hard) and α = 20◦ (soft), but connect with each other
in mirror symmetry, such that we introduce a topological
defect at their interface (see the top panels in Fig. 4 and
also [8, 37] for similar settings). The connecting interface
can be of two types: 10◦ − 10◦ or 20◦ − 20◦, represent-
ing hard-hard and soft-soft interfaces, respectively. To
understand why this defect is topological and how it is
different from a trivial defect, we present the following
argument. Suppose we can modify any inter-particle con-
tact stiffness along the chain. Now, in a dimer system, a
topologically trivial defect can be introduced by going to
the desired location in space and changing the stiffness
locally. Similarly, the argument can be made that if there
is a trivial defect, we can go to the defect site and per-
turb the stiffness locally to restore the original defect-free
dimer configuration. However, the case of a topologically
non-trivial defect is special in that it cannot be straight-
forwardly reverted to such a defect-free scenario through
a compact (i.e., local) perturbation. In other words, if
one tries to remove the topological defect by changing
the local stiffness, one can see that it is not possible
unless all stiffness values on one side of the chain are
modified (i.e., a non-compact perturbation). In essence,
a topological defect can be removed only by changing
the topology of one side of the configurations adjacently
placed. Therefore, the vibration mode caused by this
defect is topologically protected and robust against lo-
cal perturbations around the interface location (see the
Supplemental Material for details [32]).

To demonstrate the topologically non-trivial modes,
we follow the same procedure as mentioned in the earlier
section for the experimental study. A piezo-actuator is
used for sending a frequency sweep signal from one end.
It is understood that if a vibration mode caused due to a
defect is localized in the middle of the chain, it is not easy
to excite it using the input signal sent from the end of the
chain. However, our current system is short enough that
the topologically protected (TP) mode – localized in the
middle of our short chain – can still be excited by cou-
pling it to the evanescent waves inside the band-gap. In
this way, we detect the existence of TP modes for hard-
hard and soft-soft configurations (Fig. 4). Power spectral
density (PSD) plots are obtained experimentally by per-
forming Fourier transformation on the temporal velocity
profiles of all particles in each chain. As indicated by
the arrows, we can evidently observe the existence of the
TP modes in both cases. In the bottom panel, we show
the extracted normalized PSD for these modes from the
experimental data, which agree with the corresponding
computed eigenmodes. The deviation in the initial part
of the chain is due to the evanescent wave in experiments,
which the numerical eigenanalysis does not incorporate.

Lastly, we derive analytical expressions for the fre-
quencies of the TP modes by utilizing the symmetries of
their eigenmodes, which are evident through their spatial
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waveform (bottom panel of Fig. 4). Let Kh and Ks de-
note the linear stiffness corresponding to hard (10◦) and
soft (20◦) contacts. For the hard-hard interface, we ob-
serve from the mode shape that alternate particles do not
move, while the rest of the particles oscillate around their
equilibrium positions. Thus, considering that their net
stiffness is Kh+Ks, the frequency of the TP mode in this

hard-hard case would be fh = 1
2π

√
Kh+Ks

m . Similarly, for

the soft-soft interface, one can derive that the frequency

is fs = 1
2π

√
2Ks(1+γ−1)

m , where γ = 3r−1+
√
9r2−14r+9

2(r−1)
with r = Kh

Ks
(see the Supplemental Material for further

details [32]). We compare these analytical frequencies
with the experimental values extracted directly from the
spectrum plots in Fig. 4 and the numerical ones obtained
from the eigenanalysis. For the current configuration, we
find the frequency of the hard-hard TP mode is 12.18 kHz
(Theory), 12.18 kHz (Numerics), and 12.15 ± 0.19 kHz
(Experiment). Similarly, the frequency of the soft-soft
TP mode is 11.80 kHz (Theory), 11.80 kHz (Numerics),
and 11.70 ± 0.08 kHz (Experiment). Here, the standard
deviations in experiments are based on the frequencies
measured from all cylinder locations.

Judging from the agreement of analytical frequen-
cies with computational and experimental results, these
mathematical expressions can be used for distinguishing
the TP modes from trivial defect modes. We see that
for any values of Kh and Ks (complying with Kh > Ks),
the interface modes exist and the corresponding frequen-
cies reside inside the band-gap without coalescing with
the bulk bands. Hence, the modes are protected as long
as we have a topological defect (hard-hard or soft-soft)
created at the intersection of two topologically distinct
dimer configurations. Again, these TP modes are ro-
bust against perturbations near the interface in contrast
to trivial defect modes, and we verify such nature of the
TP modes via numerics in the Supplemental Material [32]
(see also other related works, such as [38–40], on 1D topo-
logical interface modes).

CONCLUSIONS

In this work, we proposed a highly tunable mechanical
system made of cylindrical granular particles, which can
demonstrate an in-situ topological band transition in a
controllable manner. Using non-contact laser vibrometry,
we precisely captured the smooth topological transition,
and showed how it leads to the emergence of a bound-
ary mode in the system. We demonstrated the existence
of topologically protected modes at the interface of two
topologically distinct dimer configurations. The experi-
mental observations of the resulting modes are supported
by theory and numerics. We also confirmed that these
topologically protected modes are robust under pertur-
bations, unlike trivial defect modes observed in granular

chains. Though the current study is limited to linear
dynamics, the proposed system can be tuned to incorpo-
rate nonlinear effects. In that light, this framework can
provide a promising testbed for future studies involving
the interplay of nonlinearity and topologically protected
modes.
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