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We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing con-
stitute topologically protected quantum optical systems where the photon propagation is robust
against large imperfections while losses associated with free space emission are strongly suppressed.
Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with non-
trivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent
nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical
analogues of interacting topological systems.

Charged particles in two-dimensional systems exhibit
exotic macroscopic behavior in the presence of magnetic
fields and interactions. These include the integer [1], frac-
tional [2] and spin [3] quantum Hall effects. Such systems
support topologically protected edge states [4, 5] that are
robust against defects and disorder. There is a signifi-
cant interest in realizing topologically protected photonic
systems. Photonic analogues of quantum Hall behavior
have been studied in gyromagnetic photonic crystals [6–
11], helical waveguides [12], two-dimensional lattices of
optical resonators [13–15] and in polaritons coupled to
optical cavities [16]. An outstanding challenge is to re-
alize optical systems which are robust not only to some
specific backscattering processes but to all loss processes,
including scattering into unconfined modes and sponta-
neous emission. Another challenge is to extend these
effects into a nonlinear quantum domain with strong in-
teractions between individual excitations. These consid-
erations motivate the search for new approaches to topo-
logical photonics.

In this Letter, we introduce and analyze a novel plat-
form for engineering topological states in the optical do-
main. It is based on atomic or atom-like quantum op-
tical systems [17], where time-reversal symmetry can be
broken by applying magnetic fields and the constituent
emitters are inherently nonlinear. Specifically, we focus
on optical excitations in a two-dimensional honeycomb
array of closely spaced emitters. We show that such sys-
tems maintain topologically protected confined optical
modes that are immune to large imperfections as well
as to the most common loss processes such as scatter-
ing into free-space modes. Such modes can be used to
control individual atom emission, and to create quantum
nonlinearity at a single photon level.

The key idea is illustrated in Fig. 1(a). We envi-
sion an array with interatomic spacing a and quanti-

FIG. 1. (a) Honeycomb lattice of atomic emitters with in-
teratomic spacing a. Each atom has a V-type level structure
with optical transitions to the |σ+〉 and |σ−〉 states. A B-field
breaks the degeneracy via the Zeeman splitting. (b) Band
structure of the lattice with B = 0. Green dashed lines indi-
cate the edges of the free-space light cone. Modes with quasi-
momentum kB < ωkB/c couple to free-space modes and are
short lived (green shaded region). Decay rates of the modes
are color-coded. Bands are degenerate at the symmetry points
K and Γ. (c) A transverse magnetic field (µB = 12Γ0)
opens a gap (grey-shaded region) between topological bands
with non-trivial Chern numbers. Relevant parameters are
λ = 790nm, Γ0 = 2π × 6MHz and a = 0.05λ.
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zation axis ẑ perpendicular to the plane of the atoms.
Each emitter has a V-type level structure with transi-
tions from the ground state to the excited states |σ+〉
and |σ−〉, excited by the corresponding polarization of
light [18]. The hybridized atomic and photonic states
result in confined Bloch modes with large characteristic
quasi-momenta that for dense atomic arrays significantly
exceed the momentum of free-space photons. These con-
fined modes are outside of the so-called “light cone” and
are decoupled from free space resulting in long-lived, sub-
radiant states [19]. Atomic Zeeman-shifts induced by a
magnetic field, create a bandgap in the optical excita-
tion spectrum, and the Bloch bands acquire non-trivial
Chern numbers. The resulting system displays all es-
sential features associated with topological robustness.
Before proceeding, we note that polar molecules coupled
via near-field interactions [20, 21] and excitons in Moiré
heterojunctions [22] have been shown to give rise to chi-
ral excitations in 2D. In contrast, the present analysis
includes both near- and far-field effects as well as scat-
tering to free space. We also note that the emergence of
Weyl excitations has been recently predicted [23] in 3D
lattices of polar particles.

In the single excitation case, following the adiabatic
elimination of the photonic modes, the dynamics of the
system (no-jump evolution in the master equation [24])
can be described by the following non-Hermitian spin
Hamiltonian [17, 25–28]

H = ~
N∑
i=1

∑
α=σ+,σ−

(
ωA + sgn(αi)µB − i

Γ0

2

)
|αi〉〈αi|

+
3π~Γ0c

ωA

∑
i 6=j

∑
α,β=σ+,σ−

Gαβ(ri − rj)|αi〉〈βj |, (1)

where N is the number of atoms, ωA = 2πc/λ is the
atomic transition frequency with wavelength λ, µB is
the Zeeman-shift of the atoms with magnetic moment
µ due to an out-of-plane magnetic field B = Bẑ with
sgn(σ±) = ±. Here, Γ0 = d2ω3

A/(3πε0~c3) is the radia-
tive linewidth of an individual atom in free space, c is the
speed of light, d is the transition dipole moment, Gαβ(r)
is the dyadic Green’s function in free space describing the
dipolar spin-spin interaction [29] and ri denotes the posi-
tion of the atoms. Note that the Hamiltonian in Eq. (1)
assumes the atoms are pinned to the lattice. The effect
of fluctuating atomic positions is discussed in Ref. [29].

For an infinite periodic honeycomb lattice, the single
excitation eigenmodes of Eq. (1) are Bloch modes [30]
given by

|ψkB
〉 =

∑
n

∑
b=1,2

eikB ·Rn

[
cb+,kB

|σb+,n〉+ cb−,kB
|σb−,n〉

]
,(2)

where the summation runs over all lattice vectors {Rn},
b = 1, 2 labels the two atoms within the unit cell and kB

FIG. 2. (a) Size of the gap between topological bands (blue
line) as a function of magnetic field for a = λ/20. (b) The
maximum gap size ∆max (blue dotted line) as a function of
the interatomic spacing a. The solid magenta line shows the
dipolar interaction strength J between two atoms with par-
allel dipole moments. The dashed green line is a phenomeno-
logical J ∼ 1/r3 fit. For a� λ, ∆max scales as 1/a3.

is the Bloch wavevector. For each kB there are four eigen-
values of the form EkB

= ωkB
− iγkB

, where the imagi-
nary part corresponds to the overall decay rate of the
modes [29].

Fig. 1(b) shows the band structure in the absence of
a magnetic field along the lines joining the symmetry
points M, Γ and K of the irreducible Brillouin zone
(see inset of Fig. 1(c)). The decay rates of the modes
(γkB

) are shown using a color code. Crucially, we find
that the decay rate of some modes can be significantly
smaller than Γ0/2 due to collective interference effects.
Green dashed lines at kB = 2π/λ mark the edges of the
light cone corresponding to free space modes with dis-
persion ωkB

= kBc. The modes close to the center of the
Brillouin zone (Γ) have quasi-momenta kB less than the
maximum momentum of free space photons at the same
energy (kB < ωkB

/c). These modes couple strongly to
free-space modes with matching energy and momentum
and decay rapidly [29]. In contrast, modes with quasi-
momenta greater than the momentum of free space pho-
tons (kB > ωkB

/c), are completely decoupled and do not
decay into free space due to the momentum mismatch.

Fig. 1(b) also shows that the photonic bands are de-
generate at the symmetry points Γ and K in the absence
of a magnetic field. These degeneracies originate from
the degeneracy of the |σ+〉 and |σ−〉 states at zero mag-
netic field. Due to the lattice symmetries, the degeneracy
at the Γ point is quadratic [31], while a linear Dirac cone
is formed at the K point [7]. Applying an out-of-plane
magnetic field lifts this degeneracy and an energy gap
forms across the Brillouin zone.

We explore the topological nature of these bands, by
calculating the Chern numbers using the method de-
scribed in Ref. [32]. The sum of the Chern numbers above
and below the band gap is +1 and −1, respectively. The
origin of these topological bands can be understood intu-
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FIG. 3. Topological edge states on the (a) bearded and
(b) armchair edges of periodic stripes of atoms. Each edge
supports only one unidirectional mode. Modes propagating
on the upper (lower) edges of the stripes are marked by di-
amonds (squares) in the band diagrams. Bulk modes are
marked with dots. Decay rates of the modes are color-coded.
Modes of the bearded (armchair) edges cross the gap with
quasi-momentum kB > ωkB/c (kB < ωkB/c) making them
long (short) lived. Parameters are the same as in Fig. 1(c).
The spectrum was obtained for the bearded (armchair) edges
from an 40x42 (40x41) lattice of atoms with periodic bound-
ary conditions along the first dimension. States for which the
ratio of the total amplitude on the top (bottom) four atom
rows to the bottom (top) four rows is greater than 15 are
classified as edge states.

itively by noting that at the K point the modes separated
in energy due to Zeeman splitting have, respectively, σ̂+
and σ̂− circular polarizations. The opposite chirality of
the bands reflects the time-dependent circular rotation
of the electric fields associated with the σ̂+ and σ̂− po-
larizations in the x-y plane.

The size of the topological gap at the K point scales lin-
early with the magnetic field due to the Zeeman splitting
(2µB) of the |σ+〉 and |σ−〉 states (Fig. 2(a)), but the gap
size is eventually limited to a maximum value ∆max due
to the level repulsion between the two upper bands at the
Γ point. Fig. 2(b) shows the maximum gap size as a func-
tion of the interatomic spacing a (blue dotted line). The
strength of the dipolar coupling J = 3πΓ0c/ωAGxx(a)
between two parallel dipoles at a distance a is also shown.
The close agreement between the two curves shows that
the maximum gap size is determined by the dipolar in-
teraction strength between the atoms. For a � λ the
maximum gap size has the simple scaling ∆max ∼ 1/a3.

Gaps between topological bands are typically associ-
ated with the presence of one-way reflection-free edge
modes at the boundaries of a finite system. To explore
the spectrum of edge modes in the gap, we calculated the
band structure for periodic stripes of atoms in a honey-
comb lattice. The stripes may have bearded, armchair
or zig-zag edges [33, 34]. Fig. 3 shows the edge geome-

tries and the corresponding band structures of stripes
with bearded and armchair edges. Zig-zag edges are dis-
cussed in Ref. [29]. Edge modes on the lower (upper)
edge of the stripe traversing the gap have positive (nega-
tive) group velocity and carry energy to the right (left).
Thus, energy transport by edge modes is unidirectional
as a consequence of the broken time-reversal symmetry
of the system. If the direction of the magnetic field is
flipped, the direction of the energy flow on any given
edge is reversed. Edge modes on bearded boundaries
have quasi-momenta kB > ωkB

/c while crossing the gap
and therefore couple weakly to free-space modes mak-
ing them long-lived. In contrast, modes on the armchair
edges cross the gap with quasi-momenta kB < ωkB

/c
and the relatively strong coupling to free-space modes
makes them short-lived. The lifetimes of edge modes are
also influenced by the lattice size. Increasing the number
of atoms N in a finite lattice, decreases the losses from
finite-size effects and increases the lifetimes of long-lived
edge modes [29].

Fig. 4 illustrates the unidirectional energy transport.
It shows a honeycomb lattice of atoms with an overall
hexagonal shape and a large defect on one edge. The
geometry was chosen such that in the absence of defects,
all boundaries are bearded edges supporting long-lived
edge modes. An out-of-plane magnetic field B induces a
band gap of size ∆ in the energy spectrum. An atom on
the boundary is adiabatically addressed by a laser at a
frequency ωL resonant with the long-lived edge modes in
the topmost part of the band gap. The laser drives the
σ+ and σ− transitions of the atom off-resonantly with
equal coupling strengths Ω, where Ω� ∆. Fig. 4 shows
a snapshot of the excitation probability of each atom in
the lattice. Approximately 96% of the excitation emit-
ted by the driven atom is coupled into the edge modes
carrying energy in the forward direction. Coupling into
the backward direction or into the bulk modes is sup-
pressed due to topology and the large band gap. These
results are qualitatively independent of the relative driv-
ing strengths of the σ− and σ+ transitions [29]. The
excitation routes around lattice corners with ∼ 97% effi-
ciency and goes around defects of arbitrary shape and size
by forming new edge modes at the defect boundaries as
shown in Fig. 4, where ∼ 83% of the excitation survives.
Atomic emission in the bulk is discussed in Ref. [29].

The distance the photon propagates on an edge is set
by the ratio of the group velocity and the intrinsic lifetime
of the edge modes. The group velocity of the edge modes
traversing the gap is vg ≈ δω/δkB ∼ ∆/(π/a), where
∆ is the size of the energy gap and a is the interatomic
spacing. Thus for a � λ, the maximum group velocity
of the edge modes scales as vg ∼ ∆max/(π/a) ∼ a−2.
While bearded edges support long-lived modes, any de-
parture from the ideal hexagonal shape of Fig. 4 creates
a combination of armchair and zig-zag modes that couple
more strongly to free-space modes and thus have limited
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FIG. 4. Snapshot of the time evolution (at t = 5.7Γ−1
0 )

of the system as an atom on the edge (red star) is driven
by a laser (inset). The color code shows the excitation
probability |〈ψ(t)|σi

+

〉
|2 + |〈ψ(t)|σi

−
〉
|2 at each atomic site

i = 1, . . . , N . Approximately 96% of the emitted exci-
tation is coupled into the forward direction and scatter-
ing into bulk and backward edge modes is strongly sup-
pressed. The excitation goes around corners and routes
around the large lattice defect. Relevant parameters are
N = 1243, λ = 790nm, Γ0 = 2π × 6MHz, a = 0.05λ
and µB = 12Γ0. The strength of the drive is Ω = 1/5Γ0

and the driving frequency is ωL = ωA + 15Γ0. The driving
laser is adiabatically switched on with a Gaussian profile
Ω(t) = Ω exp(−[t− 1.5Γ−1

0 ]2/[0.15Γ−2
0 ]) for t < 1.5Γ−1

0 .

lifetimes. To ensure that only a small fraction of the exci-
tation is lost while the photon is routed around a defect,
large group velocities and, therefore, small interatomic
spacing is required.

We note that efficient coupling of individual quantum
emitters to a confined unidirectional channel (Fig. 4) im-
mediately implies the feasibility of quantum nonlinear
interactions between individual photons. This can be un-
derstood by considering a ‘defect atom’ placed along the
path of the edge excitation. Such an atom can be used
to capture and store an incident photon in a long-lived
atomic state, following e.g. Ref. [35] (see also Refs. [36–
39]). After photon storage, the defect atom will form
a lattice defect for subsequent incoming photons, which
will be routed around this defect and, as a result, will
acquire a nonlinear phase shift.

Atomic arrays with much smaller interatomic spacing
than the transition wavelength (a� λ) could be experi-
mentally realized using state-of-the-art experiments with

bosonic Stronium atoms [23, 40]. Mott insulators in
the 1S0 ground state of 84Sr atoms using a 532nm trap-
ping laser have been realized experimentally [41] and the
atoms can be further transferred to the metastable 3P0

state [42]. Using the long-wavelength 3P0–3D1 transition
with λSr = 2.6µm for atom-atom interactions would give
a = 2λlaser/(3

√
3) = λSr/12.7 in an optical honeycomb

lattice. The interatomic spacing could be further reduced
to a = λSr/16.3 using a 412.8nm ‘magic wavelength’ trap-
ping laser providing equal confinement for the 3P0 and
3D1 states [40]. Typical trapping frequencies in Mott in-
sulators are ∼ 5Erecoil/h [43], where Erecoil/h ≈ 13kHz
for Stronium. Since the linewidth is ΓSr = 290kHz for
the 3P0–3D1 transition, the motional states of individual
atoms are not well resolved and we expect heating due
to photon scattering to be small. The main experimen-
tal challenge is to ensure near-unity lattice filling [44]
and near-uniform excitation of atoms to the 3P0 state.
Other approaches to deep subwavelength atomic lattices
include utilizing vacuum forces in the proximity of di-
electrics [45], using adiabatic potentials [46], dynamic
modulation of optical lattices [47] or sub-wavelength po-
sitioning of atom-like color defects in diamond nanopho-
tonic devices [48–51] [52].

Subwavelength emitter lattices could also be created
using monolayer semiconductors, such as transition metal
dichalcogenides (TMDCs) [53–58]. Large splitting of the
σ+, σ− valley polarizations due to interaction-induced
paramagnetic responses was recently demonstrated in
TMDCs [59]. Moiré patterns [60] could provide deep
subwavelength (a < 36nm) periodic potentials for TMDC
excitons and give rise to topological bands and chiral ex-
citonic edge states [22]. In such Moiré heterojunctions
the band gaps – and thus the group velocities of edge
states– are predicted to be small (∆ < 1Γ0). However,
as our current analysis shows, edge states outside the
light cone would be long-lived and thus could still prop-
agate a significant distance along the edges of TMDCs
prior to decay into far field modes.

In summary, we have shown that two-dimensional
atomic lattices can be used to create robust quantum
optical systems featuring band gaps between photonic
bands with non-trivial Chern numbers. For a finite lat-
tice, unidirectional reflection-free edges states form on
the system boundaries at energies inside the band gap.
These edge modes are robust against imperfections in
the lattice as well as scattering and emission into free
space. These can be used, e.g. to control emission of
individual atoms. We emphasize that, in contrast to lin-
ear topological photonic systems, a distinguishing feature
of the present approach is the intrinsic, built-in nonlin-
earity associated with quantum emitters in the lattice,
which leads to strong interactions between individual ex-
citations. Harnessing such interactions could open up
exciting possibilities for studying topological phenom-
ena with strongly interacting photons, including quan-
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tum optical analogues of fractional Quantum Hall states.
These include exotic states, such as those with filling
fractions ν = 5/2 and ν = 12/5, which may feature
non-Abelian excitations [61]. In addition, the inherent
protection against losses may also be used for the real-
ization of robust quantum nonlinear optical devices for
potential applications in quantum information processing
and quantum state transfer.
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