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Pulsed entanglement of two optomechanical oscillators and Furry’s hypothesis
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A strategy for generating entanglement between two separated optomechanical oscillators is an-
alyzed, using entangled radiation produced from downconversion and stored in an initiating cavity.
We show that the use of pulsed entanglement with optimally shaped temporal modes can efficiently
transfer quantum entanglement into a mechanical mode, then remove it after a fixed waiting time
for measurement. This protocol could provide new avenues to test for bounds on decoherence in
massive systems that are spatially separated, as originally suggested by Furry [1] not long after the
discussion by Einstein-Podolsky-Rosen (EPR) and Schrödinger of entanglement.

Macroscopic mechanical oscillators have now been
cooled to their quantum ground state [2–5], followed by
the observations of macroscopic quantum effects [6–9] in-
cluding quantum entanglement [10] between a mechani-
cal oscillator and a radiation field. Even more spectac-
ular demonstrations of macroscopic quantum properties
will soon become achievable [11–14]. An important goal
is to demonstrate long-lived entanglement between two
separated mechanical systems. This would enable new
tests of quantum mechanics, including the possible deco-
herence of EPR entanglement with space-like separation.

The intriguing idea of spatially dependent decoherence
[1] was proposed by Furry just after the publication of the
original EPR paradox [15] and entanglement papers [16].
This hypothesis (called Method A in Furry’s paper) is not
predicted by conventional quantum mechanics. It could
occur in a modified quantum mechanics, that includes
quantum gravity or other types of intrinsic decoherence.
This differs from the well-known proposals [17–20] which
focus on the collapse of the wavefunction of a macro-
scopic superposition state. Experiments show that spa-
tially dependent decoherence is not observed for massless
photons [21], although calculations suggest a small de-
cay due to space-time curvature [22]. However, there are
no measurements yet of such entanglement decay with
massive, separated objects having an entangled center-
of-mass motion. Experiments would enable bounds to be
placed on the parameters leading to a mass-dependent
decay of entanglement in Furry decoherence models [23].
Gravity-wave detectors [24] and optomechanical entan-
glement [10] demonstrate the possibility of investigating
questions like this.

In this Letter, we propose and analyze a simple pulsed
protocol for creating and measuring such macroscopic en-
tanglement. The basic experimental setup involves an en-
tangled source and spatially separated quantum optome-
chanical systems. An optical parametric amplifier creates
two entangled modes [25–28], ideally with the same fre-
quency and different polarizations. This entanglement is
transferred, on demand, to the separated quantum op-
tomechanical systems – thus destroying the initial en-
tanglement in optical modes. The entangled mechanical

Figure 1. Schematic diagram of entanglement protocol.

modes are stored, subsequently coupled out and mea-
sured optically, as shown in Fig (1). Other proposals for
entangling quantum optomechanical systems have been
suggested [11, 12, 29–33]. However, these do not give a
way to control the lifetime of quantum entanglement and
spatial separation of massive oscillators, combined with
an efficient intracavity state transfer mechanism – as has
recently been exploited experimentally to demonstrate a
coherent state memory [10, 34]. These requirements ap-
pear essential to a test of Furry’s hypothesis.

The entangled source cavity modes a1 and a2 are as-
sumed to be initially in a two mode squeezed state,
prepared using the standard technique of nondegenerate
parametric down-conversion. To give a definite model,
this entangled state is initially prepared in a source cav-
ity whose entanglement is characterized by a squeezing
parameter r. The source cavity has tunable decay rates
κ (t), generating shaped, entangled outputs [35, 36]. This
approach, using cavity Q-switching [37], is the simplest
conceptually; we note that other methods involving time-
dependent cavity detunings are also possible [35].

The resulting entangled fields are fed [38–40] into the
quantum optomechanical systems labelled Cavity 1 and
Cavity 2, respectively, assuming identical optomechani-
cal parameters. For simplicity, we linearize the equations
of motion for an adiabatic [29, 30] pulsed optomechani-
cal Hamiltonian describing these devices [31, 41–43], in-
cluding dissipation and thermal noise for the cavity and
mechanical modes, and we verify this approach using ex-
act methods. A time dependent optomechanical interac-
tion g (t) [35] allows the entangled modes to transfer to
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and from the mechanical modes b̂1 and b̂2. The internal
mechanical entanglement is read out via additional red-
detuned transfer pulses that enter the opto-mechanical
cavities after a storage time τs, as used in coherent state
transfer experiments [34]. These are shaped optimally
for maximum retrieval efficiency [35, 36], with subsequent
measurement of the stored entanglement using homodyne
detection.
Time-dependent coupling and decay The optome-

chanical systems are modeled using the standard single
mode theory [44–46], following techniques explained in
previous papers [41]. It is convenient to introduce a di-
mensionless time variable, τ = Γct, relative to the op-
tomechanical cavity decay rate Γc. To obtain universally
valid results covering a range of different cases, all other
times, frequencies and couplings are given in dimension-
less units with derivatives ḟ ≡ ∂f/∂τ .

The equations of motion for the source cavity mode
operators a1, a2, are obtained in the absence of thermal
noise, assuming the only losses are due to input/output
coupling with a transmissivity κ (τ). Using input-output
theory, with inputs ak,in and outputs ak,out one obtains
[47, 48]:

ȧk = −κ (τ) ak +
√

2κ (τ)ak,in

ak,out ≡
√

2κ (τ)ak − ak,in. (1)

We wish to generate a sech shaped output pulse,
aout ∝ sech (τ). This is achieved using a dimension-
less mirror transmissivity defined according to κ (τ) =
[1 + tanh (τ)] /2. We solve for Eq. (1) , giving

ak = ak (−∞)

√[
1− tanh (τ)

2

]
+ avac

ak,out =
a (−∞)√

2
sech (τ) + a′vac . (2)

The operators avac, a′vac are the source input and out-
put vacuum noises respectively. The cavities are cas-
caded, so dk,in = ak,out, and from the input-output re-
lations, dk,out ≡

√
2dk − dk,in. The optomechanical sys-

tems satisfy the standard quantum Langevin equations
[41, 44] with cavity detuning δω, mechanical loss γm, and
optomechanical coupling χ, in dimensionless units.

The full nonlinear optomechanical Hamiltonian in di-
mensionless terms is HNL = g0d

†d
(
b+ b†

)
. Assum-

ing an intense red-detuned pump with δω = ωm, and
a resulting adiabatic coupling of g = iχE/ (1 + iδω),
the linearized Hamiltonian for cavities 1 and 2 becomes
Ĥa,k ≈ i

(
g∗dkb

†
k − gd

†
kbk

)
Here, dk is a small fluctua-

tion around the steady state in a frame rotating with
detuning δω. We determine the time dependence of the
optomechanical interaction strengths g (τ) of cavities 1
and 2, from previous work on quantum memories [36].

To understand the mode-matching method, we start by
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Figure 2. Temporal behavior of the input field ain, the output
field Aout, the mechanical state b and the coupling strength
g(τ).

analyzing the linearized equations without losses in the
mechanical oscillator, and without vacuum noise terms.
These will be included in the full numerical analysis,
given next. At this stage, we have that:

ḋk = −dk − ig (τ) bk +
√

2dk,in

ḃk = −ig (τ) dk . (3)

To find conditions for perfect input coupling, we require
that dout = 0 in the absence of vacuum noise. Hence
dk,in =

√
2dk, leading to ḋk = dk− ig (τ) bk. If we further

assume b−∞ = 0, again neglecting vacuum noise, then it
follows that −ig (τ) = ḃk/dk, giving(

ḋk + igbk

)
/dk = ḋk/dk −

(
ḃ2
)
/
(
2d2k
)

= 1 . (4)

Now we note that dk = a (−∞) sech (τ) /2, and solving
Eq. (4) gives us bk = ia (−∞) [1 + tanh (τ)] /2. From
−ig (τ) = ḃk/dk, we obtain the input modulation re-
quirement of g (τ) = − sech (τ − τ1), where τ1 is the peak
transmission of the input. The output modulation is
identical apart from a shifted time-origin, from the sym-
metry of the input/output relations under interchange of
the input and output terms. The pulse protocol is shown
in Fig (2).
Output modes Â1, Â2 In order to ensure the entangle-

ment is stored in the mechanical, not the optical mode,
we suppose there is a separation of time-scales with a
relatively long storage time of τs � 1, so that any op-
tical excitation and entanglement has decayed. We also
assume that the mechanical dissipation rate γm is small
during the storage time, i.e γmτs � 1. Detecting the
stored entanglement requires an output measurement on

temporal modes Âk =

∫ ∞
−∞

uk (τ ′) d̂out (τ ′) dτ ′ such that[
Âk, Â

†
k

]
= 1 [31]. We can then observe entanglement

between Â1 and Â2 on a scale comparable with the ini-
tial entanglement between â1 and â2. Choosing the out-
put pulse to be an identical shape to the input, so that
âk,out ∝ sech (τ) , we have uk (τ) = u (τ) = N · sech (τ).
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This leads to a normalization of

N = 1/

√∫ ∞
−∞

sech (τ)
2
dτ =

√
1

2
, (5)

The normalization constant for a restricted time-domain
can also be found, which leads to minor corrections.
Wigner representation and stochastic equations

There is thermal noise in the mechanical mode due
to the interaction with its reservoir. In order to
simulate these effects, and to include vacuum noise
terms rigorously, it is useful to introduce a quantum
phase-space representation of the system density matrix
[49]. Initially we choose the Wigner distribution, which
for the initial entangled state is given by [50]

W (α+, α−, τ0) =
4

π2
exp

[
−2

(
|α+|2

e2r
+
|α−|2

e−2r

)]
. (6)

Here α±= (α1 ± α∗2) /
√

2 and r is the squeezing parame-
ter that characterizes the degree of entanglement. Since
this has a Gaussian probability distribution, one can
readily simulate the experimental protocol by generating
Gaussian noise vectors ξ±x , ξ±y with unit variance, defining
α±=

[
ξ±x + iξ±y

]
e±r/2 and then obtaining mode ampli-

tudes α1 = (α+ + α−) /
√

2 and α2 =
(
α∗+ − α∗−

)
/
√

2.
It is also possible to use a positive-P representation [51],
which allows an exact simulation of the full nonlinear
Hamiltonian ĤNL, with no approximations apart from
sampling [41]. For reasons of space, the full analysis will
be given elsewhere, but the results are plotted here.

Quantum dynamical time evolution now follows a
stochastic equation. Taking account of the cascaded
input-output relations, the coupled equations describing
time evolution of the Wigner amplitudes for the entan-
gled source cavities αk, optical cavities δk and mechanical
modes βk are given, for k = 1, 2, by

α̇k = −κ (τ)αk +
√

2κ (τ)ξk

δ̇k = −δk − ig (τ)βk + 2
√
κ (τ)αk −

√
2ξk

β̇k = −γmβk − ig (τ) δk +
√

2γm (2n̄th,m + 1)ξ2+k .(7)

Here n̄th,m = 1/ [exp (~Γcωm/kBT )− 1] is the average
phonon number in the mechanical bath, and ξk are com-
plex Gaussian noises with variances that correspond to
the ’half-quanta’ occupations of symmetric Wigner vac-
uum correlations, 〈ξk (τ) ξ∗l (τ ′)〉 = 1

2δklδ (τ − τ ′). Using
the input-output relations again, we obtain the expres-
sion δk,out =

√
2δk −

√
2κ (τ)αk + ξk. The output modes

used for detecting entanglement are then:

Ak,out =

∫ τmax

τ1+τs/2

u (τ − τ2) (8)

×
([√

2δk −
√

2κ (τ)αk

]
+ ξk

)
dτ .
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Figure 3. Entanglement as a function of temperature for
three different storage times. The initial squeezing param-
eter is r = 1, characterizing the degree of entanglement in
the source cavity, while ∆ent,0 = 0.135 is the initial value
of entanglement. Sloping dashed lines represent the analytic
approximation, solid lines the exact positive-P simulation re-
sults including the full nonlinearity, and the dotted lines are
the truncated Wigner approximate simulations.

Note that the time integration for the output modes only
starts after the first transfer pulse has been completed.
Experimental parameters We assume that the optical

modes of cavities 1 and 2 are initially in a vacuum state.
The source cavity and cavities 1 and 2 are connected by
a perfect, lossless waveguide.

Our simulations used experimental parameter values
very similar to the optomechanical experiment values re-
ported by Chan et. al. [3]. The mechanical modes have
an initial occupation of nth,b (0) = 0.7, corresponding to
a reservoir temperature of 200mK. The cavity decay rate
is Γc/2π = 0.26 GHz. Relative to this time-scale, the me-
chanical oscillator has dimensionless resonance frequency
ωm/2π = 14.23, with a mechanical dissipation rate of
γm/2π = 1.59 · 10−5 and an optomechanical coupling
strength of χ0/2π = 3.5 × 10−3, which justifies the lin-
earization [29, 30] and adiabatic approximations [31].

The time dependent source cavity decay rate
that shapes the entangled modes is given by

κ (τ) =
1

2
[1 + tanh (τ − τ1)], while the effective coupling

strength is

g (τ) =

{
−
√

2u (τ − τ1) ,∀ 0 ≤ τ ≤ τ1 + τs
2

−
√

2u (τ − τ2) ,∀ τ1 + τs
2 ≤ τ ≤ τmax ,

(9)

where τ1 = 8.17 and τ2 = τ1 + τs are the dimension-
less times when the storing and reading pulses peak, and
τmax = 2τ1 + τs, while τs is the dimensionless time be-
tween the peaks of the storage and readout pulses. It is
also the storage time of the entangled state in the me-
chanical mode, as illustrated in Fig. 2.
Entanglement criterion We use the phase- and gain-

optimized product signature as an entanglement criterion
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Figure 4. Entanglement as a function of temperature and
storage time. Results are obtained using the truncated
Wigner method, other parameters as in Fig (3).

[52], defined as:

∆p
ent =

4∆
(
X1 −GXθ

2

)
∆
(
P1 +GP θ2

)
(1 +G2)

< 1 , (10)

where Xθ
k = 1

2

[
e−iθAk,out + eiθA†k,out

]
, P θk = X

θ+π/2
k

and G is an adjustable real constant. In particular,
Xk = X0

k , Pk = P 0
k are the usual phase and amplitude

quadratures. We minimize ∆p
ent with respect to the gain

G and phase θ simultaneously. When inequality (10)
holds, the optimized value of ∆p

ent characterizes the de-
gree of quantum entanglement between the modes [53].

We compute ∆p
ent in Eq. (10) as a function of ther-

mal reservoir occupation number for a set of different
storage times and a fixed squeezing parameter. To give
an approximate analytic prediction, we consider only the
degradation of the entanglement during its storage period
in the mechanical oscillators. Using results described in
[54], we predict an entanglement value of

∆p
ent = e−2γmτse−2r +

(
1− e−2γmτs

)
(1 + 2n̄th,m) .

(11)

Fig. (3) shows the predicted entanglement results for
squeezing parameter r = 1 and three different storage
times τs = 16.3, 40.8, 81.7, corresponding to 10 ns, 25 ns
and 50 ns, respectively. The dotted and solid lines indi-
cate simulation results and dashed lines theoretical pre-
dictions.

The truncated Wigner simulation results in the dotted
lines were obtained by solving Eqs. (7) with a stochastic
4-th order Runge-Kutta algorithm, 3000 time-steps and
≈ 2 · 108 samples, using open-source software [55]. They
are in good agreement with our analytic predictions. Re-
sults for an exact positive-P simulation of the full non-
linear optomechanical model, with neither adiabatic nor
linearization approximations, are also given (solid line of
Fig 3). These used 104 time steps, and give essentially the
same results, showing that quantum predictions for this
system can be calculated quantitatively. A larger initial
entanglement in the source cavity and a shorter storage
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Figure 5. Fidelity F as a function of the thermal bath occu-
pation number and storage time. Other parameters as in Fig
4.

time gives even better output temporal mode entangle-
ment. Fig. (4) gives a three-dimensional representation
of the truncated Wigner results against storage time and
temperature, showing how higher mechanical tempera-
tures more rapidly degrade entanglement.
Quantum fidelity We consider the quantum fidelity

measure F = 〈ψ|ρ|ψ〉 , where |ψ〉 is the two mode
squeezed state and ρ is the density operator describing
the temporal output modes. The fidelity quantifies the
efficiency of our entanglement protocol as the entangle-
ment in output temporal modes rely on successful entan-
gled state transfer from the source cavity. In the Wigner
representation [56, 57],

F = π2

∫
Wψ (α1, α2)Wρ (α1, α2) d2α1d

2α2 . (12)

From the quantum simulations, we obtain sampled tem-
poral output modes from the Wigner function Wρ. The
quantum fidelity F is then computed using

F =
π2

Nsample

∑
i

Wψ

(
Ai1,out, A

i
2,out

)
, (13)

where Aik,out is the i-th sample of temporal output mode
Ak,out and Nsample is the total number of samples taken.

The quantum fidelity in Eq. (13) is also computed as a
function of reservoir temperature and storage time, show-
ing the steep drop in fidelity as storage time is increased.
Comparing plots in Fig. (4) and Fig. (5) shows that a
fidelity F of at least about 0.3 is needed for entangled
output modes.
EPR-steering In addition to entanglement, we also

analyze the stronger, asymmetric nonlocality signature
known as the EPR-steering that links directly to the EPR
paradox [15, 25, 58]. We use the CV signature for steering
of system 1 by system 2 [25]

EPR1|2 = 4∆
(
X1 −GXθ

2

)
∆
(
P1 +GP θ2

)
< 1 , (14)
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Figure 6. EPR-steering as a function of the thermal bath
occupation number for three different storage times. Other
parameters as in Fig 3.

with X, P as previously and an optimized gain G. Fig. 6
shows the predicted results for EPR-steering. The solid
lines indicate simulation results and the dashed lines give
analytic predictions. The analytic predictions were ob-
tained analogously to the entanglement predictions. Us-
ing the results described in [54], we obtain

EPR1|2 =
2ab (1− b) c+ b2 + c2 (1− b)2

ab+ (1− b) c
, (15)

where a ≡ cosh (2r) , b ≡ e−2γmτs , c ≡ (1 + 2n̄th,m) .
Because of the symmetric setup, EPR1|2 and EPR2|1
are equal in magnitude. Both approximate truncated
Wigner and exact positive-P results were obtained here,
giving excellent agreement with the analytic theory for
these parameter values.
Conclusions In summary, our results show that a syn-

chronous pulsed experiment can, in principle, transfer,
store and read out macroscopic entanglement of two me-
chanical oscillators with nearly 100% efficiency under
ideal conditions. Due to finite temperature effects and
damping, this effect is degraded in a predictable way.
We calculate the quantitative effects of known decoher-
ence on this proposed experiment. The experimental ob-
jectives would be to demonstrate entanglement transfer,
and hence place a bound on any decoherence rate caused
by the oscillator separation, to test the validity of models
that implement Furry’s hypothesis.
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