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Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-
Wagner theorem for short-range interactions, may take place in the presence of slowly decaying
long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should
decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-
range interacting spin chain with U(1) symmetry and power-law interactions V (r) ∼ 1/rα. Using a
number of analytical and numerical techniques, we find CSB for α smaller than a critical exponent
αc(≤ 3) that depends on the microscopic parameters of the model. Furthermore, the transition
from the gapless XY phase to the gapless CSB phase is mediated by the breaking of conformal and
Lorentz symmetries due to long-range interactions, and is described by a universality class akin
to, but distinct from, the Berezinskii-Kosterlitz-Thouless transition. Signatures of the CSB phase
should be accessible in existing trapped-ion experiments.

Long-range interacting systems have recently attracted
great interest as they emerge in numerous setups in
atomic, molecular, and optical (AMO) physics [1–15].
The advent of AMO physics has offered the intriguing
possibility of simulating many-body systems which have
been extensively studied theoretically in condensed mat-
ter physics [16–18]. While many properties of long-range
interacting systems derive from their short-range coun-
terparts, long-range interactions also give rise to novel
phenomena [19–21]. In particular, they can induce spon-
taneous symmetry breaking in low-dimensional systems,
which, for short-range interactions, is forbidden by the
Mermin-Wagner theorem [22]. Such possibilities have
been studied at finite temperature [21, 23, 24], where
stronger versions of the Mermin-Wagner theorem have
been proven for long-range interacting spin systems [24].
Despite a number of studies of variable-range models [25–
30], this subject is less investigated at zero temperature
[31]. As long-range interactions effectively change the
dimensionality of the system, the emergence of CSB for
sufficiently slowly-decaying interactions is not surprising;
however, the equivalents of the stringent bounds at fi-
nite temperature [24] are not known at zero tempera-
ture. Furthermore, the quantum phase transition from
the CSB phase to other 1D quantum phases must be
exotic since, at zero temperature, the phases separated
by this transition typically occur in different dimensions.
With recent advances of the ion-trap quantum simulator
in tuning long-range interactions [12, 14, 15], this topic
appears to be of immediate experimental relevance.

In this paper, we consider the ferromagnetic XXZ spin-
1/2 chain with power-law interactions V (r) ∼ 1/rα. We
find that the continuous U(1) symmetry is spontaneously
broken for a sufficiently slow decay of the interaction be-
low a critical value of the exponent αc(≤ 3) that depends
on the microscopic parameters of the model. Exploit-

ing a number of analytical techniques such as spin-wave
analysis, bosonization, and renormalization group (RG)
theory, as well as a numerical density matrix renormal-
ization group (DMRG) analysis, we explore the phase
diagram, and identify the phase transitions between dif-
ferent phases. In particular, we find that the phase tran-
sition between the CSB and XY phases is similar to, yet
distinct from, the Berezinskii-Kosterlitz-Thouless tran-
sition. Signatures of such phases and phase transitions
should be accessible in existing trapped-ion experiments.

Model.—Let us consider the long-range interacting
XXZ chain

H =
∑
i>j

1

|i− j|α
(
−Sxi Sxj − S

y
i S

y
j + JzS

z
i S

z
j

)
, (1)

with Sx,y,z = σx,y,z/2 where σs are the Pauli matrices.
Note that Jz can be either positive or negative, while the
Sx-Sx and Sy-Sy interactions are ferromagnetic. This
model has a U(1) symmetry with respect to rotations in
the x-y plane. To explore the zero-temperature phase
diagram of this model, we first bosonize the Hamiltonian
[32, 33]. However, with long-range interactions between
all pairs of spins, bosonization is rather complicated, at
least at a quantitative level. Nevertheless, to capture the
essential features of the phase diagram, we can split the
Hamiltonian into two parts: the short-range part of the
Hamiltonian and the asymptotic long-range interaction
terms. In the bosonization language, the spin Hamil-
tonian can be mapped to one in terms of the bosonic
variables φ and θ defined in the continuum, which sat-
isfy the commutation relation [∇φ(x), θ(y)] = iπδ(x−y) .
Roughly speaking, the field θ gives the spin orientation in
the x-y plane, while the gradient of φ characterizes the
spin component along the z axis; we shall make these
definitions more precise below. The short-ranged Hamil-
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tonian can be mapped to the sine-Gordon model [32],

HSR =
u

2π

ˆ
dx

[
1

K
(∇φ)2 +K(∇θ)2

]
− 2g

(2πac)2

ˆ
dx cos [4φ(x)] , (2)

with ac a short-wavelength cutoff, K the so-called Lut-
tinger parameter, u a velocity scale, and g the strength
of the cosine interaction term; the values of these pa-
rameters have been computed in the Supplemental Ma-
terial (SM) [34] by including terms up to the next-
nearest neighbor in Eq. (1) perturbatively in Jz and 1/2α.
Higher-order neighbors modify the parameters in Eq. (2),
and induce higher-order harmonics which can neverthe-
less be neglected as they are less relevant in the RG sense.

To find the long-range part of the Hamiltonian, we
approximately identify the spin operators in terms of
the bosonic fields φ and θ as S±j ≡ Sxj ± iSyj ∼
e±iθ(xj) and Szj ∼ ∇φ(xj) where xj is the position
of the spin at site j [32, 33]. More generally, the
spin operators can be expanded in a series of harmon-
ics eipφ; however, we have dropped those with p ≥ 1
as they give rise to irrelevant terms. With this iden-
tification, the long-range Sz-Sz interaction takes the
form

´
dxdy |x− y|−α∇φ(x)∇φ(y) , which, in momen-

tum space, is proportional to
´
dq|q|α+1|φ(q)|2. We shall

restrict ourselves to α > 1, that is, the exponent is larger
than the spatial dimensionality, so that the Hamiltonian
(1) has a well-defined thermodynamic limit. With this
assumption, the long-range Sz-Sz interaction is irrele-
vant compared to the gradient term in φ (proportional
to q2|φ(q)|2) in Eq. (2) and can thus be neglected. On the
other hand, the long-range Sx-Sx and Sy-Sy interactions
can be cast as

HLR = −gLR
ˆ ′

dxdy
1

|x− y|α
cos [θ(x)− θ(y)] , (3)

with gLR the coefficient of long-range interactions. The
prime on the integral indicates |x−y| > λ with λ a cutoff
distance much larger than lattice spacing; in this sense,
the long-range interactions can be treated perturbatively.
The bosonized Hamiltonian is then approximately the
sum of the short- and long-range parts given by Eqs. (2)
and (3), respectively. The cosine terms in Eqs. (2) and
(3) involve non-commuting fields and thus compete with
each other. To determine which one dominates, we shall
resort to renormalization group theory.

Quantum phases.—To find the phase diagram, we per-
form an RG analysis that is perturbative in g and gLR.
The quadratic terms in Eq. (2) yield the scaling di-
mensions

[
eipφ

]
= p2K/4 and

[
eipθ

]
= p2/(4K) that

characterize scaling properties under spacetime dilations
[32, 33]. The RG equations for the interaction coefficients

g and gLR then read (space-time rescaled by e−dl)

dg

dl
= (2− 4K) g ,

dgLR
dl

= [3− α− 1/(2K)] gLR . (4)

The RG equations to a higher order, and those for K and
u, are given in Eq. (8). Note that the value of K itself
also depends on α. In deriving the flow of gLR, we have
used the fact that x and y in Eq. (3) are far separated.

Equation (4) gives rise to several phases depending on
whether the interaction terms are relevant, and which one
is more relevant. When both g and gLR are irrelevant, the
cosine terms can be dropped (assuming that they can be
treated perturbatively). In this case, one finds an XY-like
phase known as the Tomonaga-Luttinger (TL) liquid. In
this phase, correlation functions decay algebraically with
exponents determined by K [32]. Nevertheless, there is
no true U(1) symmetry breaking as 〈S+

i S
−
j 〉 → 0 for

|i− j| → ∞. This phase is described by a conformal field
theory with the central charge c = 1 and an emergent
Lorentz symmetry as long-range interactions are irrele-
vant. When the local interaction term is relevant, and
more relevant than the long-range interaction, the latter
can be dropped, while the former gaps out the system.
This regime corresponds to an Ising phase, which occurs
for a sufficiently large |Jz|: An antiferromagnetic (AFM)
Ising phase emerges for large and positive, α-dependent,
values of Jz, while a ferromagnetic (FM) Ising phase ap-
pears for all Jz < −1 as shown in the SM [34] via a
spin-wave analysis, see Fig. 1. We stress that all the
above phases also exist in the absence of long-range in-
teractions; the presence of such terms, however, modifies
the boundaries between these phases.

We are mainly interested in a regime where the long-
range interaction term is (more) relevant, that is, α <
3− 1/(2K). Hence α ≤ 3 is a necessary condition for the
long-range interaction to be relevant. In this regime, as-
suming that g can be treated peturbatively, one can drop
the local cosine term, and the model can be described by
the Euclidean action [53]

I =
K

2πu

ˆ
dτ

ˆ
dx
[
(∂τθ)

2 + u2(∇θ)2
]

−gLR
ˆ
dτ

ˆ ′ dxdy
|x− y|α

cos [θ(τ, x)− θ(τ, y)] , (5)

where the ∇φ term in Eq. (2), being conjugate to θ, is
replaced by the (imaginary) time derivative ∂τθ up to
a prefactor. Since gLR grows under RG, the value of
the corresponding cosine term is pinned, i.e., θ(x) ≈
θ0 = const. This, in turn, implies a finite expecta-
tion value of the spin in the x-y plane, 〈S+

j 〉 ∼ eiθ0 .
It thus appears that the ground state breaks a contin-
uous symmetry. To examine the effect of fluctuations,
we expand the cosine in Eq. (5) to quadratic order, and
combine it with the quadratic terms in Eq. (5) to find
I ∼
´
dωdq

(
ω2 + q2 + |q|α−1

)
|θ(ω, q)|2, where we have
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Figure 1: Phase diagram for the Hamiltonian (1) based on
a finite-size DMRG calculation of the effective central charge
ceff = 6[S(N1)− S(N2)]/[log(N1)− log(N2)] [42]. Here S(N)
is the ground-state entanglement entropy for a chain of size N
split in two equal halves. We choose N1 = 100 and N2 = 110
in our calculation. The XY phase has conformal symmetry
and is identified by ceff = 1. The XY-to-CSB phase boundary
is numerically obtained by finding the place where ceff starts
to increase appreciably (4%) above 1 (the black squares fitted
by the black line). The dotted (purple) line is the XY-to-CSB
transition line obtained from perturbative field theory calcu-
lation in [34]. The XY-to-AFM phase boundary is obtained
by finding the place where ceff starts to decrease appreciably
(1%) below its value at Jz = 1 and α =∞ (the white squares
fitted by the white line).

dropped various coefficients for convenience and taken
θ0 = 0 without loss of generality. Clearly, the term
proportional to q2 can be dropped compared to |q|α−1
for α < 3, thereby long-range interactions are dominant
and the conformal and Lorentz symmetries are broken
[37, 38]. The long-distance correlation of S± is given by〈
S+
i S
−
j

〉
∼ exp

[
R
− 3−α

2
ij

]
→ const when Rij →∞, (6)

where Rij = |xi−xj |. (In the exponent, we have not kept
track of a coefficient of order one which depends on α as
well as Jz.) Therefore, fluctuations respect the continu-
ous symmetry breaking in this phase, in sharp contrast
with the destruction of order in short-range interacting
systems [22]. We conclude that CSB may be realized for
sufficiently small values of α(< 3). The above findings
are consistent with the phase diagram in Fig. 1 obtained
numerically using the finite-size DMRG method [39–41]
using the central charge. A similar phase diagram can
also be obtained from correlation functions, see the SM
[34]. It is worth pointing out that the quadratic action,
after dropping the q2 term, is exact in the RG sense;
possible higher-order terms that respect the U(1) sym-
metry are irrelevant. Specifically, the critical dynamic
exponent, determining the relative scaling of space and

time coordinates, is given exactly by

z =
α− 1

2
< 1 . (7)

The fact that z < 1 indicates that the ‘light-cone’ char-
acterizing the causal behavior in the CSB phase is sub-
linear. The response function for this model is studied
and is shown to take a universal scaling form [43].

Finally, we remark that an alternative spin-wave analy-
sis ignores vortices [21] and predicts a straight line αc = 3
for the phase boundary between the XY and CSB phases.
This also remains true for self-consistent improvements
beyond spin-wave analysis [44]. However, the RG equa-
tions include the effect of vortices and predict a phase
boundary at 3−αc−1/[2K(αc)] = 0, see also [27, 29] for
similar considerations in related models. For the pertur-
bative evaluation of K as a function of α reported in the
SM [34], we find the dotted line in Fig. 1 that captures
the qualitative trend of the phase boundary near Jz = 0.

Phase transitions.—The ferromagnetic (FM) phase for
Jz < −1 is connected to the CSB and XY phases at
Jz > −1 via a first-order transition. The phase transition
between the XY and the antiferromagnetic (AFM) phases
is the Berezinskii-Kosterlitz-Thouless (BKT) transition,
which is well understood for short-range interactions
[32, 33]. We are mainly interested in the phase tran-
sition from the CSB phase to the XY phase described by
Eq. (5).

Next we derive the RG flow beyond Eq. (4). We first
consider the RG flow of the parameter K. Since the in-
teraction term in Eq. (5) is nonlocal in space but local in
time, we find a renormalization of (∇θ)2, but not (∂τθ)

2,
to first order in gLR. This signals breaking of the Lorentz
invariance as the space and time coordinates behave dif-
ferently, which in turn also leads to a renormalization of
the velocity u. The RG flow for gLR is given by the second
equation in Eq. (4); however, it also receives corrections
at the quadratic order in gLR: At this order, two vor-
tices from different insertions of gLR can neutralize each
other at close distances, while the far-separated vortices
form an interaction of the same form as the second line
of Eq. (5). Putting the above considerations together, we
find the RG equations to first nonzero order

dK

dl
= AK gLR +O(g2LR) ,

1

u

du

dl
=

1

K

dK

dl
+O(g2LR) ,

dgLR
dl

= [3− α− 1/(2K)] gLR +BK g
2
LR +O(g3LR) , (8)

with AK , BK > 0 depending on the parameter K and the
renormalizion scheme, see the SM [34] for details. To find
the critical behavior near the fixed point, we expand the
above equations in its vicinity defining δ = 3−α−1/(2K).
The RG flow equations then read dδ/dl = AgLR and
dgLR/dl = δ gLR + Bg2LR—the constants are given by
A = AK/2K

2 and B = BK with the substitution
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K → 1/[2(3−α)]. The flow equations are similar, but dis-
tinct from, the usual BKT transition: The equation for
δ starts at the linear order (as opposed to quadratic) in
coupling gLR, and the correction to the RG equation for
gLR appears at the quadratic (as opposed to cubic) order
which should be kept. Indeed, the RG flow for the usual
BKT transition is unchanged under reversing the sign of
coupling [an example of which is the sine-Gordon model
(2), where a change of g → −g can be simply undone
by φ → φ + π/4], but there is no such requirement for
long-range interactions, hence the appearance of lower-
order terms in the flow equations. The corresponding
RG flow diagram is shown in Fig. 2. The flow trajectory

Figure 2: The RG flow in the vicinity of the phase transition,
denoted by the thick (red) line, between the CSB phase and
the XY phase. We have defined δ = 3 − α − 1/(2K). The
RG flow is given by gLR ∼ δ2 +a(1 + δ), where the parameter
a quantifies the distance from the critical point. For δ < 0,
the a = 0 contour (denoted by the red line) describes the
critical line. The flows with a > 0 and those with a < 0
and δ > 0 proceed to infinity characterizing the CSB phase.
The trajectories with a < 0 and δ < 0 flow to the wavy line
characterizing the XY phase.

near the transition point has a parabolic form given by
gLR ∼ δ2+a(1+δ) with suitably rescaled variables where
a parameterizes the distance from the critical trajectory;
for a = 0, one finds the critical trajectory gLR ∼ δ2.
The RG flow and the form of the critical trajectory are
distinctly different from the BKT transition, where the
trajectories are hyperbolic, and the critical trajectory is
a wedge rather than a parabola [45]. We also remark that
a similar phase transition arises in a long-range classical
Ising model with α = 2 at finite temperature (as op-
posed to our XXZ model with variable α at zero temper-
ature) [46–50] where similar flow equations emerge [48].
Nevertheless, this classical phase transition is fundamen-
tally different from the model considered here since the
corresponding critical dynamic exponents and dynamics
(relaxational vs. quantum) are completely unrelated.

At large distances, the correlation function in the CSB
phase approaches a constant; however, at short distances,
the system still exhibits power-law decaying correlations

predicted by the XY model. The length scale ξ that sepa-
rates these two regimes diverges near the phase transition
as a → 0+. One finds that ξ ∼ e1/

√
a with a coefficient

of order unity ignored in the exponent. This relation
is reminiscent of the BKT transition where a should be
identified as the distance from the critical temperature,
and ξ as the correlation length [45]. In our case, a is
simply a parameter that quantifies the distance from the
critical trajectory; one can take it, for example, to be the
difference of the exponent α from its critical value αc.

Experimental detection.—Our model Hamiltonian can
be realized by optical-dipole-force-induced spin-spin in-
teractions in a trapped ion chain [51]. For Jz = 0 and
0.5 < α < 2, the dynamics of the Hamiltonian, Eq. (1),
has already been simulated experimentally, with mea-
surements available for individual spins [14, 15]. In or-
der to observe the continuous CSB phase and related
phase transitions, we can experimentally add a tunable-
strength magnetic field in the x-y plane. The ground
state for a finite-size system can be adiabatically pre-
pared if we ramp down the magnetic field slowly enough
compared to the energy gap [12, 52]. For a finite-size
chain, the spontaneous symmetry breaking can be sim-
ulated by stopping the ramping process at a small but
finite residual magnetic field. Then, by measuring spin
magnetization along the magnetic field direction, we can
confirm the existence of the CSB phase. Indeed, the CSB
phase has robust features even in systems of . 20 spins,
and can be adiabatically prepared in experimentally ac-
cessible time scales; see the SM [34] for details. Finally,
the CSB phase is robust against thermal fluctuations for
α / 2 which is well within experimental reach.

Conclusion and outlook.—In this work, we have con-
sidered a 1D spin Hamiltonian with long-range interac-
tions, and shown that a phase with continuous symmetry
breaking emerges for sufficiently slowly decaying power-
law interaction. In particular, we have found a BKT-like
transition from the CSB to the XY phase akin to the
BKT transition. It is worthwhile confirming the associ-
ated universality class employing more powerful numer-
ical techniques. More generally, it is desirable to obtain
stringent, and model-independent, bounds on how slowly
long-range interactions should decay to give rise to spon-
taneous symmetry breaking in one-dimensional systems
at zero temperature. Furthermore, quantum phase tran-
sitions from the CSB phase to other 1D quantum phases
are worth exploring. Finally, our approach is not suited
to study α < 1 when the thermodynamic limit ceases
to exist, or for α = 1 or 3 where the dispersion acquires
a multiplicative logarithm. Such borderline values of the
power-law exponent often give rise to new types of phases
and phase transitions and would constitute an interesting
topic for future investigations.
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