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In a seminal paper [Phys. Rev. Lett. 71, 1291 (1993)], Page proved that the entanglement entropy
of typical pure states is Siyp ~ InDa — (1/2)D3/D, for 1 « Da < VD, where Da and D are the
Hilbert space dimensions of the subsystem and the system, respectively. Typical pure states are
hence (nearly) maximally entangled. We develop tools to compute the average entanglement entropy
(S) of all eigenstates of quadratic fermionic Hamiltonians. In particular, we derive exact bounds
for the most general translationally invariant models, InDa — (InDx)?/InD < (S) < InDa —
[1/(21n2)](InDa)?/InD. Consequently we prove that: (i) if the subsystem size is a finite fraction
of the system size then (S) < InDj in the thermodynamic limit, i.e., the average over eigenstates
of the Hamiltonian departs from the result for typical pure states, and (ii) in the limit in which
the subsystem size is a vanishing fraction of the system size, the average entanglement entropy is
maximal, i.e., typical eigenstates of such Hamiltonians exhibit eigenstate thermalization.

Introduction. The concept of entanglement is a corner-
stone in modern quantum physics. Different measures
of entanglement have been extensively used to probe
the structure of pure quantum states [1], and they have
started to be measured in experiments with ultracold
atoms in optical lattices [2, 3]. Here, we are interested
in the bipartite entanglement entropy (referred to as the
entanglement entropy) in fermionic lattice systems. In
such systems, an upper bound for the entanglement en-
tropy of a subsystem A (smaller than its complement) is
Smax = InDy, where D and Dp are the dimensions of
the Hilbert space of the system and of the subsystem,
with Dy < VD (see Fig. 1 for an example for spinless
fermions). Note that InDp « Va, where Vy is the num-
ber of sites in A, i.e., this upper bound scales with the
“volume” of A. (When A is larger than its complement,
the Hilbert space of the complement is the one that de-
termines S.) Almost twenty-four years ago, motivated by
the puzzle of information in black hole radiation [4], Page
proved [5] that typical (with respect to the Haar measure)
pure states nearly saturate that bound (the correction is
exponentially small) [6-10]. Their reduced density ma-
trices are thermal at infinite temperature [11-13].

In stark contrast with typical pure states, ground
states and low-lying excited states of local Hamiltoni-
ans are known to exhibit an area-law entanglement [1].
Namely, their entanglement entropy scales with the area
of the boundary of the subsystem. On the other hand,
most eigenstates of local Hamiltonians at nonzero energy
densities above the ground state are expected to have
a volume-law entanglement entropy (with the exception
of many-body localized systems [14, 15]). Within the
eigenstate thermalization hypothesis (ETH) [16-18], one
expects volume-law entanglement in all eigenstates (ex-
cluding those at the edges of the spectrum) of quantum
chaotic Hamiltonians [19-23], with those in the center of
the spectrum exhibiting maximal entanglement [23].

Thanks to the availability of powerful analytical and
computational tools to study ground states, many re-
markable results have been obtained for the entanglement
entropy of such states [24-29]. On the other hand, for ex-

L)2

— Spax/IN2=Ly Pg 10°

L4 L/2 3L/4 L—1

FIG. 1. Entanglement entropy of eigenstates of noninteract-
ing spinless fermions in a periodic chain with L = 36 sites.
Results are plotted as a function of the linear subsystem size
La. (Lower line) Average entanglement entropy (S) of all
eigenstates, and (upper line) upper bound Spax = InDa =
Laln2 for Ly < L/2 [Smax = (L — La)In2 for Lo > L/2].
Each pixel denotes the weight of eigenstates |m) with target

entropy S, defined as Ps = D! ZO<(S—Sm)<1n2'

cited states there is a wide gap between what is expected
and what has been shown. For interacting Hamiltonians,
computational studies are severely limited by finite-size
effects so it is difficult to know what happens to the en-
tanglement entropy with increasing the subsystem size.
This question was recently addressed for quadratic [30—
32] and non-quadratic but integrable [33] Hamiltonians,
for which one can study much larger lattices, revealing
that randomly generated eigenstates are generally maxi-
mally entangled in the limit in which the size of the sub-
system is a vanishing fraction of the size of the system
(in short, a vanishing subsystem fraction).

In this Letter we prove that, for a nonvanishing sub-
system fraction, the average entanglement entropy of all
many-body fermionic eigenstates of translationally in-
variant quadratic Hamiltonians departs from Page’s re-
sult. Still, the scaling of that average is volume law. In
the limit of vanishing subsystem fraction, we prove that
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the overwhelming majority of eigenstates are maximally
entangled. Our proof stands on calculations of spectrum
averages of eigenstate entanglement entropies, which are
based on the insight that such averages can be obtained
as traces over even powers of a matrix, without the need
of calculating its eigenvalues.

Entanglement entropy of energy eigenstates. We
study the most general quadratic Hamiltonian of spinless

fermions: H = — Y (AyfIfT+ AL fifi + i 1 1)),
where A;; = —Aj; and t;; = t3;, and f2 is the fermionic
annihilation operator at site i. A Bogoliubov transforma-
tion fl = Zlvzl(ailél + Bilég) rotates the Hamiltonian so
that it commutes with the quasiparticle number operator
N, =2 élT ¢, — 1. Hence, the many-body energy eigenkets
|m) satisfy Nj|m) = N;|m) with N; =
the binary representation m = 1 + ZzV:1
runs from 1 to D = 2", V is the number of lattice sites).

Correlations of a state |m) are encoded in V' x V one-
body correlation matrices. They form a 2V x 2V matrix
J, which is a linear complex structure [34]
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Since the many-body eigenstates {|m)} are Gaussian
states, the matrix iJ fully characterizes them [35-38].
Correlations of a subsystem A containing Vj sites are
encoded in the restricted complex structure [iJ]a, the
2V x 2V matrix obtained by restricting the matrix iJ
to the entries with 7,5 € A. The entanglement entropy
of subsystem A in the eigenstate |m) can be computed
as [35, 36]

5 Tr{<]1 +2[1J]A> N (11 +2[iJ]A>}. -

Expanding Eq. (2) in powers of [iJ]s, about [iJ]s = 0,
allows one to compute the entanglement entropy without
calculating the eigenvalues of [iJ]a

+1, and we adopt

1+ N, 9l—1
527 (m

= Tr[iJ])3
Sm:LAan_;m’ (3)

where we use the compressed notation Tr[iJ]3" =

Tr{[iJ]3"}. Since the restricted complex structure sat-
isfies [iJ]i < 1 [34], one has

0 < TefiJ] 2 < Tr[iJ)2™ < 2V (4)

and the series in Eq. (3) is convergent.
Equation (3) allows one to compute the average over
the ensemble of all eigenstates {|m)} as

§) = vama— 3 BEIR)

— 4n(2n — 1) ’ (5)
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where we define (O) =

A remarkable property of the series in Eq. (5) is that
every higher-order term lowers the average entangle-
ment entropy. Hence, any truncation gives an upper
bound. Using the inequality in Eq. (4), one can also
produce lower bounds for the average entanglement en-
tropy. To obtain the first-order lower and upper bounds,
Sy < (S) < S, we only need to compute (Tr[iJ]3)
since: (i) truncating the series in Eq. (5) after the first
term results in Sf , and (ii) substituting all averages of
higher-order traces by (Tr[iJ]3) results in S . This gives

(Tx[iJ]3) (Tx[iJ]3)
Va IHQ—TA ?A. (6)

For a given eigenstate |m) of our Hamiltonian,
[i/]a is linear in the quantum numbers N;. In fact,
(ml £ f;=f; flm) = £y Niagaju—B80) and (m|f] £~
FIfTim) = 32, Ni(ag B, — B50)). The average (Tr[iJ]3")
can therefore be computed from the binomial correla-

tion function (Ny, --- Ny, ). In particular, to compute
(Tr[iJ]4), we use that (N;Ny) = dy to get

=23 > (lojo — Bubal (7)

LiigA taa B — Buajl?) .

Whenever (Tr[i.J]3)/Va does not vanish in the thermo-
dynamic limit, (S)/Va < In2.

Bounds for translationally invariant Hamiltonians.
The Bogoliubov coefficients for a translationally invari-

In2 < (S)<Vyln2—

(Tr 1J

ant system in n dimensions are: oy = eifud: U;;l/ VV and
Bi = e_iEl'fiv,-c*l/\/V, with up = u_g, vp = —v_g, and
lup|® + [vz]|* = 1. Substituting these in Eq. (7) leads to

8lvg [2|ug | cos 2k (F; — 7;)

_ZZ l l V2

| ijeA
sin?(Ly, [ki])
=,

(8)

where the space sum runs within an n-dimensional hyper-
cube A with side lengths L, containing Vj = HZ:1 L,
sites.  Ome can bound (Tr[iJ]%) from below using

lug, Plvg, |2 < 1/4. As V — oo, one can substitute
- (zﬂ)n ST d k. Since [” dksin®(Lyk)/sin’(k) =
2m L, then (Tr[iJ]%) > 2V3/V —2V4/V. In the ther-
modynamic limit, we get that (Tr[iJ]4) = 2V3/V. The
corresponding universal first-order bounds are:

(Tr[iJ]3)

_ 2VA2 B Z S‘UEZ|2|U‘EL|2
v p V2

1V2 1 (InDy)?

+ _ ,7A - A TA)
Sl = VA1n2 oV IHDA o2 InD
- VA o (lnDA)2

Note that: (i) ;" and S; fulfill a volume law as they are
proportional to Vi, and (ii) for any nonvanishing sub-
system fraction, limy o Va/V # 0, S§ < Valn2 in



the thermodynamic limit, i.e., the average departs from
the result for typical states in the Hilbert space. If the
subsystem fraction vanishes in the thermodynamic limit,
limy 00 Va/V = 0, the lower and the upper bounds co-
incide and limy, /v _0 57 = limy, ;v 0 S’f =Valn2. In
this limit, the average entanglement entropy is maximal,
i.e., typical eigenstates of the Hamiltonian have a typical
(a la Page [5]) entanglement entropy.

Entanglement entropy bounds for free fermions. We
now apply our construction to free fermions on a trans-
lationally invariant chain with L lattice sites, described
by the Hamiltonian H=— Zi[:jzl tj,iﬁfj. In this case,
the Bogoliubov coefficients are ux = 1 and vy = 0, so
that the eigenstates are plane waves. This allows us to
obtain closed form expressions for finite systems. We de-
note the linear subsystem size as L. Figure 1 shows the
distribution of Sy, for all eigenstates |m) in a lattice with
L = 36 sites, as well as the corresponding average (S). It
is remarkable that when La departs from 1, the entan-
glement entropy of the eigenstates with the most weight
departs from Spmax = La In2 [30, 32].

Using (N Ng/) = 0gxs, we can explicitly compute

2
(Tr = QZ Z NiNy) e P (k=R i=5) = 72LA
ij=1kk'=1 L

(10)
for finite systems. The first-order bounds for (S), for
finite systems, are then given by Eq. (9) and (11) upon
replacing V' — L and Vjy — La.

It is straightforward to calculate bounds beyond the
first order. A general procedure to compute averages of
traces of [iJ]3" is presented in Ref. [34]. The main in-
sight from our analysis is that the term (Tr[iJ]3")/La
is a polynomial that, when L — oo, only contains pow-
ers from (Lo/L)" to (La/L)?>"~!. For the second order
upper (S5 ) and lower (S, ) bounds [34], one gets

103 2L% 114
St =ILaln2—=-=A_Z224 4 ~ZA 11
i S i PR (11)

- 113 AL I4

In order to obtain Eq. (11), we neglected finite-size cor-
rections of order O(1/L) and higher.

In Fig. 2(a), we compare the first- and second-order
bounds with the average (S) computed on a lattice with
L = 36 sites. The bounds can be seen to be very close
to the numerically computed average. At La/L = 1/2,
where the relative deviation is largest, we get that 0.52 <
(S)/I(L/2)In2] < 0.59. In Fig. S1 of Ref. [34], we ex-
trapolate numerical results for (S) to the limit L — oo.
Finite-size effects are found to be exponentially small in L
[39], and we obtain limy,_,{(S)/[(L/2)In2] = 0.5378(1).

Entanglement entropy variance for free fermions. In
order to understand whether the average of the entan-
glement entropy over all eigenstates is representative of
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FIG. 2. Entanglement entropy mean, bounds, and variance

for free fermions on a periodic chain. (a) Upper bounds (S},
S57) and lower bounds (S; , Sy ), given by Egs. (9) and (11),
for the average entanglement entropy. The upper (magenta)
line is the maximal entanglement entropy Smax and the thick
black line is the average entanglement entropy (S) on a lattice
with L = 36 sites (same results as in Fig. 1). (b) ¥g for La =
60 in ensembles of 10° randomly sampled eigenstates and,
solid line, the prediction from Eq. (14). (¢) Xg for La/L =
1/2 calculated using all eigenstates in lattices with L < 38.
The solid line is a single-parameter fit to X5 = a/vL for
L > 30, with a = 0.410.

the entanglement entropy of typical eigenstates, we cal-
culate the variance

_sH =82 1
Yo = (Laln2)2  (Lpln2)2 Z_lFm o (12)
where
P = (Trfi]Am TrliJ]3) — (Tefig]3") (Trfi]3")

’ 4m(2m — 1) 4n(2n — 1)

(13)
The computation of F;, , is, in general, a daunting task.
However, by using a summation technique to compute
higher-order traces [34], we are able to extract key prop-
erties of X g. In particular, we are able to prove that Xg
vanishes with increasing the system size as Y ~ 1/v/L
or faster [34]. Furthermore, in the limit of vanishing sub-
system fraction (fixed Ln for L — o0), we obtain the
lowest order term in L to be

1 1 La 1
e — (24— ). 14
7 L2 (In2)2 ( 3 +6LA> (14)
Numerical results for Yg in this limit, reported in
Fig. 2(b), confirm the accuracy of this prediction. Nu-
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FIG. 3.  Distribution of eigenvalues of the restricted com-

plex structure for vanishing subsystem fraction. The overlap-
ping solid lines depict Py, which are averages of the discrete
distribution py = Zlkj—M<6/\/2 over 10° random eigenstates,
where \; are eigenvalues of [iJ]a and we take 6\ = 1072, The
symbols depict ’PiTGE), which are averages of the discrete dis-

tribution p&TGE)

= ZIArM<5>\/2 over 108 realizations of the
Toeplitz Gaussian Ensemble (TGE), where A; are the eigen-
values of the TGE and we take 6\ = 1072, Both axes are
renormalized to show data collapse. (Inset) Scaling of S [see
Eq. (16)]. The symbols show numerical results of an average
over 10° random eigenstates. The solid line shows the results

of Eq. (16).

merical results for La/L = 1/2, reported in Fig. 2(c),
confirm that ¥g ~ 1/v/L for a nonvanishing subsystem
fraction. The vanishing of the variance proves that the
average and typical entanglement entropies are identical.

Eigenvalue distribution for free fermions. Our results
for the average entanglement entropy allow us to unveil
some remarkable properties of the eigenvalues \; of [iJ]a
in energy eigenstates. Eigenvalues A; satisfy |A;| < 1 [34].
It is also straightforward to prove that the average of
the sum of eigenvalues vanishes: (37, \;) = (Tr[iJ]a) =
La(1 —2(N)/L) = 0, where (N) = L/2 is the average
number of particles. On the other hand, the average of
the variance of the eigenvalues of [iJ]s can be calculated
using Eq. (10), yielding

o2 = i <§j: A§> = im[um = L—LA (15)

This allows us to conclude that o“ vanishes if
limz7_yo0 La/L = 0 (implying (S) is maximal), and can-
not vanish if limy_,o La/L # 0. In Fig. 3, we report
results of numerical calculations of the distribution of
eigenvalues of [iJ]s (for small values of Lo /L) in a large
ensemble of randomly chosen eigenstates. This distri-
bution can be seen to have a universal form that only
depends on the ratio L /L, and whose width is \/La /L.

The variance of the distribution of eigenvalues of [iJ]s
(62 = La/L) is important as it determines how the av-

2

erage entanglement entropy reaches the maximal value
in the thermodynamic as Ly/L — 0. The lowest order
correction to (S) = L In2 in terms of La /L can be read
from Egs. (11), in which the upper and lower bounds

coincide up to O[(La/L)?],
(LLA> ] . (16)

A comparison of the latter expression to numerical re-
sults, reported in the inset in Fig. 3, yields an almost
perfect agreement for La /L < 0.05.

For a vanishingly small subsystem fraction, the fact
that: (i) the average entanglement entropy is maximal,
and (ii) the distribution of eigenvalues of [iJ]a is univer-
sal (see Fig. 3), hints that a random ensemble may ex-
plain those results. We construct such an ensemble, the
Toeplitz Gaussian Ensemble (TGE). In the TGE, the en-
tries of [iJ]s are replaced by random complex numbers
whose absolute value is that of a normally distributed
variable with zero mean and variance 1/L, and whose
phase is uniformly distributed between 0 and 27w. As
shown in Fig. 3, the corresponding eigenvalue distribu-
tion is nearly indistinguishable of the numerical calcula-
tion over 10° random eigenstates. (See also Fig. S2 of
Ref. [34], which shows that taking the limit L — oo first,
followed by Lp — oo, results in two distributions that
are identical.) This shows that, in the limit of vanishing
subsystem fraction, no specific information beyond the
symmetries of the model appears to be encoded in the
restricted complex structure [iJ]a of typical eigenstates.

Discussion. Our work introduces a novel methodology
that enables the rigorous study of the entanglement en-
tropy of excited eigenstates of quadratic Hamiltonians.
The derivation of exact bounds for the average entan-
glement entropy of translationally invariant quadratic
Hamiltonians reveals a fundamental difference between
the results for vanishing and nonvanishing subsystem
fractions, which is not captured by the analysis of typ-
ical states in the Hilbert space [5]. This highlights the
difference in information content between typical eigen-
states of physical Hamiltonians, such as those considered
here, and typical states in the Hilbert space. The fact
that, for vanishing subsystem fraction, typical eigenstates
are maximally entangled constitutes a proof that typical
eigenstates satisfy ETH for local observables.

We note that Egs. (1)—(7) also apply to quadratic mod-
els of much current interest such as those appearing in
disordered [40] and periodically driven (Floquet) [41] sys-
tems. While our study focuses on the von Neumann en-
tanglement entropy, the upper bounds derived remain
valid for higher-order Renyi entropies, which are bounded
from above by the von Neumann entanglement entropy.
This is of particular relevance for current experiments
with ultracold atoms on optical lattices [2, 3], which can
now measure the second Renyi entropy.
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