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We analyze quantum dynamics of periodically driven, disordered systems in the presence of long-
range interactions. Focusing on stability of discrete time crystalline (DTC) order in such systems,
we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions,
we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC
order can be obtained. We further predict a sharp crossover from the stable DTC regime into
a regime where DTC order is lost, reminiscent of a phase transition. These results are in good
agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature
543, 221-225 (2017)]. They demonstrate the existence of a novel, critical DTC regime that is
stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows
that DTC response can be used as a sensitive probe of non-equilibrium quantum matter.

Introduction.—Understanding and controlling non-
equilibrium quantum matter is an exciting frontier of
physical science. While periodic driving has long been
used to control the properties of quantum systems, it
was only recently realized that periodically driven (Flo-
quet) systems can also host new states of matter that
are not possible in equilibrium. In particular, this is pos-
sible in a class of driven disordered systems exhibiting
many-body localization (MBL) [1], called Floquet-MBL
systems, which avoid unbounded heating to infinite tem-
perature [2–4]. The latter is generally expected to befall
all ergodic isolated systems due to external driving [5–7].

One remarkable example of a novel, non-equilibrium
phase of matter is the recently introduced discrete time
crystal (DTC) [8–11], which is characterized by a spon-
taneously broken discrete time-translation symmetry of
the underlying drive. In such systems, physical observ-
ables exhibit robust oscillations with a period that is an
integer multiple of the underlying driving period T . In-
deed, key signatures of such robust DTC order have been
observed in two recent experiments [12, 13]. In partic-
ular, one of these realizations involved a disordered en-
semble of ∼ 106 spins associated with nitrogen-vacancy
(NV) centers in diamond, which interact between them-
selves via dipolar couplings [13]. The origin of appar-
ent robustness of the observed DTC order in such a sys-
tem [13], however, has not been fully understood. Al-
though this system is disordered due to the random po-
sitions of the NV-centers in 3D, the long-range dipolar
interactions are believed to preclude localization [14–18].
Moreover, a prethermal regime of the DTC [19], was also
ruled out [13] since in the experiment the initial polar-
ized state is effectively at an infinite temperature with
respect to the effective Hamiltonian due to the randomly
varying signs of the dipolar interactions. Since neither
localization nor prethermalization are likely the mecha-
nisms that stabilize the DTC order, this raises important
questions about the origin of the observed robust DTC
response.

This Letter develops a theoretical treatment of DTC
order in systems with long-range interactions. We uti-
lize a perturbative approach to analyze the interplay of
long-range interactions, periodic driving, and positional
disorder of spins. Focusing on dipolar systems in 3D, we
show that although DTC order is only transient, it can
persist for asymptotically long times with strongly sup-
pressed thermalization rate. This behavior is intrinsically
connected to slow thermalization dynamics of disordered
dipolar systems in 3D, which has been previously shown
to be consistent with the so-called critical regime [14, 20]
without periodic drive. As a function of experimental pa-
rameters, we find that the relaxation time shows a sharp
crossover between a regime where DTC response is ro-
bust and a regime where it decays rapidly. This crossover
is reminiscent of a phase transition, thereby allowing us
to obtain the effective phase diagram of DTC which is
in good agreement with experimental results. Thus, our
work provides an explanation of the recent experimental
observations [13], and also demonstrates the possibility
of the DTC in systems with critical dynamics, a regime
which we refer to as ‘critical time crystals’. Furthermore,
our perturbative approach can be used to study the non-
equilibrium properties in other driven disordered systems
with long-range interactions.

Our key results can be understood by considering a
simple spin model that describes an ensemble of dipo-
lar interacting NV centers, used in the experiments of
Ref. [13]. Using strong microwave excitations, the ef-
fective Ising interactions between spins were engineered,
described by the following Hamiltonian:

H0 =
∑
i

ΩSxi +
∑
i,j

Jij
r3
ij

Sxi S
x
j , (1)

where ~Si = (Sxi , S
y
i , S

z
i ) are Pauli spin-1/2 operators, Ω

the strong microwave driving along x̂, Jij the orientation
dependent coefficient of dipolar interactions with typical
strength J0, and rij the distance between spins i and
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Figure 1. (a) Ensemble of randomly positioned spins in 3D
interacting via dipolar interactions. (b) Illustration of single-
spin-flip processes. (c, d) Energy level diagram for the second-
order process of two spins flipping, in two regimes: (c) high
frequencies (ω0 � W ) and (d) low (ω0 � W ) frequencies.
The applied field flips a spin with magnitude ε/τ1, which costs
energy ∼ hI −m∗ω0.

j. We assume that the spin-1/2 particles are randomly
distributed in three dimensional space with density n0

and neglect coupling to the environment [Fig. 1(a)]. DTC
order was observed by interrupting the evolution under
Hamiltonian (1) with rapid, global pulses that rotate the
spin ensemble along the ŷ-axis by an angle π + ε. The
corresponding Floquet unitary is given by

UF = exp

[
−i
∑
i

(π + ε)Syi

]
exp [−iH0τ1], (2)

where τ1 is the period for which the spins are allowed
to interact for. In the experiment, the period is chosen
such that Ωτ1 = 2πn, and therefore Ω can effectively be
taken to be 0 in Eq. (1). When the system is initialized
in a state where all spins are polarized along the +x̂ di-
rection, a non-trivial temporal response may be revealed
by measuring the average polarization P (nτ1) of the en-
semble along x̂ after n Floquet cycles, or equivalently,
q(n) ≡ (−1)nP (nτ1), which serves as an order parame-
ter for the DTC phase. The stability of the DTC order
can be ascertained by studying the decay rate of q(n) for
large number of cycles as a function of τ1 and ε.

In order to describe the dynamics of q(n), we move
into a so-called toggling frame, which rotates by Pπ ≡∏
j exp

[
−iπSyj

]
each time a global pulse is applied to the

system. Since PπS
x
i (Pπ)−1 = −Sxi , the 2τ1-periodic os-

cillation in P (nτ1) naturally appears as a time-indepdent
spin polarization in this new frame. The dynamics of
the system is then described by the Floquet unitary
ŪF = exp [−i

∑
i εS

y
i ] exp [−iH0τ1], or, equivalently, by

an effective time-dependent Hamiltonian

H(t) =
∑
ij

Jij
r3
ij

Sxi S
x
j + ε

∑
i

Syi
∑
n

δ(t− n−τ1). (3)

Thus, our problem reduces to studying the depolarization
dynamics of an initialized polarized spin ensemble under
the time evolution of H(t).
Physical picture.—The essence of our analysis is to

study resonant spin dynamics that lead to depolariza-
tion perturbatively in ε, while accounting for energy ex-
changes provided by the external drive. In particular,
since

∑
n δ(t − n−τ1) = 1

τ1

∑
m e

imω0t, the pulsed peri-
odic spin rotations can be viewed as spin excitation with
harmonics of the fundamental frequency ω0 ≡ 2π/τ1 and
fixed magnitude ε/τ1. While this driving allows energy
absorption and emission in integer multiples of ω0, the in-
terplay of strong interactions and positional disorder sup-
presses direct energy exchanges such that typical spins
depolarize only via indirect higher order processes in ε.

Let us first consider the case without perturbations,
i.e. ε = 0. Then the polarization of each spin along x̂
is conserved. When all spins are initially polarized, each
spin therefore experiences a mean-field potential hi ≡∑
j 6=i(Jij/r

3
ij)〈Sxj 〉. Due to the random positioning of

spins, the strength of hi is also random with zero mean
and variance W 2 = 〈 14 (

∑
j 6=i Jij/r

3
ij)

2〉, where 〈·〉 denotes
averaging over different positions.

When ε 6= 0, there is depolarization due to spins ex-
periencing a time-varying on-site field along the ŷ-axis.
Let us therefore consider the first order process where
spins individually flip due to the action of this field. If a
spin experiences a a strong mean-field potential hi com-
pared to the applied field, that is, if hiτ1 � ε, then it
does not flip – it experiences an effective field that is ap-
proximately pointing along the x̂-axis and therefore pre-
cesses around it without significant depolarization. On
the other hand, if hiτ1 is close to an integer multiple of
2π, then the spin rotates along the ŷ-axis and depolar-
izes. Physically, this corresponds to an effectively res-
onant excitation of (individual) spins that arises when
one of the driving harmonics is tuned close to their en-
ergy: |hi−m∗ω0| < ε/τ1 for some optimal integer m∗ [see
Fig. 1(b)]. Such resonances occur with a small probabil-
ity in the limit of ε�Wτ1, and amount to a reduction of
the total polarization by a constant factor proportional
to ε/(min(W,ω0)τ1). However, if ε ∼ Wτ1, a substan-
tial fraction of spins rapidly depolarize due to resonant
processes shown in Fig. 1(b). Note that the phenomeno-
logical phase boundary extracted in Ref. [13], based on
the existence of self-consistent closed spin trajectories, is
consistent with the perturbative condition ε�Wτ1.

We next focus on the second order process illustrated
in Fig. 1(c,d) in which a pair of spins I and J simultane-
ously flip their polarizations while exchanging their en-
ergies with each other and with the external drive. Such
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processes are resonant when

∆IJ ≈ |hI + hJ −m∗ω0| < Jeff
IJ , (4)

where hI and hJ are effective on-site potential for spins
I and J , m∗ is the optimal harmonic number that mini-
mizes the energy difference, and Jeff

IJ is the effective am-
plitude of the pair-flip process. The amplitude Jeff

IJ

Jeff
IJ ∼

(
ε

τ1

)2
JIJ
r3
IJ

(
1

δ2
I

+
1

δ2
J

)
, (5)

can be estimated from the interference of two paths
in second order perturbation theory, as illustrated in
Fig.1(c,d). Here δI(J) ≡ min`∗(hI(J)−`∗ω0) is the energy
difference between initial/final states and intermediate
virtual states, up to extra energy provided by a driving
harmonic `∗. We find that Jeff

IJ is an effective long-range
interaction decaying as ∼ 1/r3

IJ allowing the flipping of
remote spin pairs.

The resonance condition (4) is sensitive to ω0 and be-
haves qualitatively differently in two limiting cases: (i)
ω0 �W and (ii) ω0 �W [see Fig. 1(c,d)]. In the former
case, the optimal choice is m∗ = `∗ = 0 since spins can-
not absorb or emit such a large energy ω0. In the latter
case, effective energy differences (both ∆IJ and δI , δJ)
are bounded by ω0 as the external drive can always com-
pensate energy in units of ω0. These considerations yield
the scaling Jeff(r) ∼ CJ0/r

3 with

C ≈
{

(ε/τ1W )2 for ω0 �W
ε2 for ω0 �W

, (6)

and the effective range W eff of the energy differences ∆IJ

becomes W eff ∼ W for ω0 � W and W eff ∼ ω0 for
ω0 �W .

We now estimate the probability that a given spin finds
a resonant partner within a ball of radius R. This is
obtained by integrating the probability of finding such a
partner in a shell R and R+ dR

dP =
(
Jeff(R)/W eff

)
n04πR2dR, (7)

from a short distance cut-off a0 to R, which gives P (R) ∼
log(R/a0). Here the first factor in Eq. (7) is the prob-
ability of satisfying Eq. (4), and the second factor is
the average number of spins within a shell of size R
with the density n0. As this probability diverges, it
implies that pair-wise spin flips prevail, and the sys-
tem thermalizes, with the DTC order slowly decaying
over time. We can extract the timescale associated with
these pair-spin flip processes using the typical distances
R∗ of resonant spin pairs. Solving P (R∗) ∼ 1 gives
R∗ ≈ a exp [W eff/4πCJ0n0]. Finally, the effective depo-
larization rate is estimated from the interaction strengths
of typical pairs, i.e., Γ̃ ∼ Jeff(R∗), leading to the decay
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Figure 2. Phase diagram of the DTC obtained numerically
(see [23] for details). Dotted lines indicate limiting behaviors
of the phase boundary: at high driving frequencies, the phase
boundary is linear, τ1 ∝ |ε|, while for low driving frequen-
cies, it closes up as τ1 ∝ 1/ε2, c.f. Eq. (8). This is in good
agreement with the experimental observations of Ref. [13].

rate per Floquet cycle Γ ≡ Γ̃τ1:

Γ ∼


J0ε

2

a30τ1W
2 exp

[
− 3W 3τ2

1

4πJ0n0ε2

]
for ω0 �W

J0ε
2τ1
a30

exp
[
− 3

2J0n0ε2τ1

]
for ω0 �W.

(8)

This exponentially slow in 1/ε2 decay of the DTC order
is a central result of the present Letter, and is a direct
consequence of critically slow thermalization of dipolar
systems in 3D [20, 21]. Interestingly, the depolarization
is exponentially sensitive to the parameters τ1 and ε in
two distinct ways: in regime (i) Γ is a function of τ2

1 /ε
2

while in regime (ii) it only depends on 1/ε2τ1. These con-
siderations allow us to identify an effective phase bound-
ary using the criteria τ2

1 /ε
2 = A or 1/ε2τ1 = B with

some constants A and B. Remarkably, this boundary il-
lustrated in Fig. 2 captures the key features observed in
the experiment [13]: the linear growth of ε for short τ1
and slow diminishing of ε at longer τ1 [22].
Technical procedure.—We now outline the technical

procedure that formalizes the above discussion (see [23]
for details). The key idea is to identify a time-dependent
unitary transformation of the Hamiltonian H(t) such
that non-resonant single spin-flips are essentially “inte-
grated out” and only residual two-spin-flip processes be-
come dominant terms in the effective Hamiltonian H ′(t).
More specifically, we start from the Hamiltonian (3) with
H0 representing the Ising interactions and V the applied
field, and perform a time-periodic unitary transformation
Q(t+ τ1) = Q(t), which gives rise to:

H ′(t) = Q(t)†(H0 + εV
∑
n

δ(t− n−τ1)− i∂t)Q(t). (9)

Our goal is to eliminate terms that are linear in ε
from H ′(t). Following Ref. [4], we look for Q(t) of
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Figure 3. Decay rate versus perturbation ε for various τ1s
obtained numerically [23] . One sees a sharp rise of the decay
rate as one crosses the DTC phase boundary (determined as
the ε for which Γ(ε, τ1) = 1/100), which is reminiscent of a
phase transition.

the form Q(t) = eεΩ(t) with anti-Hermitian operator
Ω(t) =

∑
n Ω(n)einω0t. Expanding Eq. (9) in powers of

ε, and requiring that the O(ε) term equals 0 gives an
equation for the nth Fourier mode Ω(n):

V

τ1
− [Ω(n), H0] + nω0Ω(n) = 0. (10)

The matrix elements of the operator Ω̂(n) can be com-
puted in the eigenstate basis |s〉 of H0 (which is a product
state basis in Sxi operators):

〈s′|Ω(n)|s〉 =
〈s′|V |s〉

(Es − Es′ − nω0)τ1
. (11)

Noting that V =
∑
i S

y
i , the operator Ω(n) has non-zero

matrix elements only between spin configurations s and
s′ that differ by one spin-flip. If |s〉 and |s′〉 differ by

the value of spin I, Es − Es′ = 2
∑
j 6=I

JjI
r3jI
Sxj (s)SxI (s) =

2hIS
x
I . We assume that the on-site field hI is random

(due to positional disorder and orientation dependence
of Jij) and sufficiently strong such that resonances are
rare, i.e. the denominator in (11) typically does not di-
verge and the procedure controlled. Then, the rotated
Hamiltonian to second order becomes

H ′(t) = H0 −
ε2

2
[Ω(t), V ]

∑
n

δ(t− n−τ1) (12)

A straightforward calculation [23, 24] using expression
(11) gives an effective Hamiltonian of the following form:

H ′(t) = H0 +
∑
IJ

AIJJIJ
r3
IJ

(
S+
I S

+
J + h.c.

)∑
n

δ(t−n−τ1),

(13)
where S+

I ≡ (SzI + iSyI )/
√

2 is the spin raising operator
in SxI basis for the spin I, and AIJ is the coefficient

AIJ ≈ −2SxI (s)SxJ (s)

(
ε

τ1

)2
(

1

δ̃2
I

+
1

δ̃2
J

)
, (14)

where we introduced the notation 1
δ̃2J

=
∑
`

1
(hJ−`ω0)2

.

The effective Hamiltonian (13) contains the larger dis-
ordered part H0, and long-range terms which can flip
pairs of spins; the latter are suppressed proportional to
ε2, leading to slow relaxation. From Eq. (14) it is evident
that the amplitudes for flipping a pair of spins depend on
hI , hJ , which in turn are determined by the positions of
the spins. Assuming that hI , hJ take typical values of the
order W , and taking the contribution of the harmonic `∗

for which hJ − `ω0 is minimized (this gives the leading
contribution to δ̃J), the expression (14) for the two-spin-
flip amplitude reduces to the estimate (5) above.

We emphasize that the above unitary transforma-
tion is distinct from the rotating frame transformations
employed to derive effective Hamiltonians in the high-
frequency limit [25, 26]. Rather, it utilizes the random-
ness of our Hamiltonian in order to effectively integrate
out non-resonant single spin flip processes.

Phase diagram.—Using the effective Hamiltonian ap-
proach described above, we obtain the phase diagram
of the critical DTC. To improve upon the estimates for
Γ(ε, τ1), we take into account the fact that the distribu-
tion of the potential hi stems from positional randomness
of spins, and numerically sample hi from a distribution of
2000 spins in a 3D region with density 9.26×10−3 nm−3

with a short distance cut-off of 3 nm [20].

While Eq. (8) already provides analytical predictions
for the decay rate Γ by estimating the typical distance
R∗ of resonant spin pairs, in numerics we find it more
amenable to estimate Γ from an explicit depolarization
in time profile; the counting arguments in Eq. (7) pre-
dicts a power-law decay of polarization q(n), from which
the decay timescale 1/Γ is extracted by equating q(n)
to a small threshold [23]. The phase boundary is then
identified from a criteria Γ(ε, τ1) = Γ∗ = 1/100.

This approach yields the phase diagram illustrated in
Fig. 2, which is in very good agreement with the experi-
mental observations [13, 27]. At high driving frequency,
the boundary approximately follows a relation τ1 ∝ |ε|
(also obtainable using a semi-classical argument), while
at low frequency τ1 ∝ 1/ε2, which indicates that DTC
order becomes less stable as τ1 is increased, due to the
fact that multi-photon processes lead to faster depolar-
ization. The DTC phase is most robust in the crossover
regime, where ω0 ∼W .

We also note that strictly speaking DTC order has
finite relaxation rate at any ε 6= 0, τ1 6= 0. However,
we find that the relaxation rate Γ increases very sharply
at a certain value of ε, as illustrated in Fig. 3, which
matches the experimental observations and is reminis-
cent of a phase transition. Note, however, that unlike for
a true phase transition, this increase does not become
infinitely sharp even in the thermodynamic limit.

Summary and discussion.—We described a new ap-
proach to analyze dynamics of periodically driven spin
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systems with long-ranged interactions and applied it to
explain the recently observed surprising stability of DTC
in dipolar spin system. The results of our analysis are
in very good agreement with experimental observations.
They demonstrate that these observations correspond to
a novel, critical regime of the DTC order.

Furthermore, our general approach can be applied to
analyze the interplay of long-range interactions, random-
ness, and periodic driving in a broad class of experimen-
tal systems. The present analysis focused on the exper-
imentally relevant case of critical interactions, decaying
as 1/rα, where α coincides with the dimensionality of
the system, α = d = 3. This leads to direct relaxation
processes of spin pairs. It is interesting to extend the
analysis to the case α > d (e.g. α = 3, d = 2), where res-
onant spin-pair-flip processes are rare and presumably
do not provide the main relaxation channel. Experimen-
tally, such a situation can be realized by reducing the
dimensionality of the dipolar spins systems. In the static
case, relaxation is expected to occur via multi-spin pro-
cesses: in essence, a sparse resonant network may form,
which can act as a heat bath that mediates relaxation of
other spins [16, 18]. We expect that future experiments
on DTC in reduced dimensions will allow one to probe
such delicate interplay of various relaxation mechanisms
in driven systems with long-range interactions. Our the-
oretical approach is well suited for analyzing such sys-
tems. Finally, apart from these specific realizations, our
analysis demonstrates that the DTC response to peri-
odic perturbations can be used as a sensitive probe of
non-equilibrium quantum states and phases of matter.
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